Skip to main content

Advertisement

Log in

Effects of oxygen vacancy on the mechanical, electronic and optical properties of monoclinic BiVO4

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Bismuth vanadate (BiVO4) is a promising candidate material for photocatalytic hydrogen generation and photocatalytic degradation of organics. In this paper, first-principle calculations are performed to investigate the effects of oxygen vacancy on the structural, elastic, electronic and optical properties of monoclinic BiVO4. It is illustrated that oxygen vacancy can exist in BiVO4 stably and might promote the transition of band gap from indirect to direct ones. Essentially, oxygen vacancy can enhance the hybridization of O2p, V3d and Bi6s orbitals, and shift the band edges. As a result, the dielectric function, refractive index, absorption coefficient, optical reflectivity, loss function and conductivity in the low energy range have a redshift. In addition, the real part of dielectric constant ɛ 1, refractive index n and reflectivity R of ideal BiVO4 increase with energy in the low energy range; however, they will decrease when oxygen vacancies are generated in BiVO4. But the other optical parameters are roughly independent of oxygen vacancies in the whole energy range.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Li X, Wang L, Lu X (2010) Preparation of silver-modified TiO2 via microwave-assisted method and its photocatalytic activity for toluene degradation. J Hazard Mater 177(1–3):639–647

    Article  Google Scholar 

  2. Paola AD, Paola AD, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29

    Article  Google Scholar 

  3. Wang J, Fan XM, Wu DZ, Dai J, Liu H, Liu HR, Zhou ZW (2011) Fabrication of CuO/T-ZnOw nanocomposites using photo-deposition and their photocatalytic property. Appl Surf Sci 258(5):1797–1805

    Article  Google Scholar 

  4. Yang YX, Guo YG, Liu FY, Yuan X, Guo YH, Zhang SQ, Guo W, Huo MX (2013) Preparation and enhanced visible-light photocatalytic activity of silver deposited graphitic carbon nitride plasmonic photocatalyst. Appl Catal B Environ 142–143:828–837

    Article  Google Scholar 

  5. Ju P, Wang P, Li B, Fan H, Ai S, Zhang D (2014) A novel calcined Bi2WO6/BiVO4 heterojunction photocatalyst with highly enhanced photocatalytic activity. Chem Eng J 236:430–437

    Article  Google Scholar 

  6. Macwan DP, Dave PN, Chaturvedi S (2011) A review on nano-TiO2 sol–gel type syntheses and its applications. J Mater Sci 46(11):3669–3686

    Article  Google Scholar 

  7. Frontistis Z, Drosou C, Tyrovola K, Mantzavino D, Kassinos DF, Venieri D, Xekoukoulotakis NP (2012) Experimental and modeling studies of the degradation of estrogen hormones in aqueous TiO2 suspensions under simulated solar radiation. Ind Eng Chem Res 51:16552–16563

    Article  Google Scholar 

  8. Zhao J, Yan JH, Jia HJ, Zhong SW, Zhang XY, Xu L (2016) BiVO4/g-C3N4 composite visible-light photocatalyst for effective elimination of aqueous organic pollutants. J Mol Catal A: Chem 424:162–170

    Article  Google Scholar 

  9. Yu CL, Yu JC (2009) A simple way to prepare C–N-codoped TiO2 photocatalyst with visible-light activity. Catal Lett 129(3–4):462–470

    Article  Google Scholar 

  10. Li Y, Sun ZH, Zhu SM, Liao YL, Chen ZX, Zhang D (2015) Fabrication of BiVO4 nanoplates with active facets on graphene sheets for visible-light photocatalyst. Carbon 94:599–606

    Article  Google Scholar 

  11. Luo HM, Mueller AH, McCleskey TM, Burrell AK, Bauer E, Jia QX (2008) Structural and photoelectrochemical properties of BiVO4 thin films. J Phys Chem C 112(15):6099–6102

    Article  Google Scholar 

  12. Min SX, Wang F, Jin ZL, Xu J (2014) Cu2O nanoparticles decorated BiVO4 as an effective visible-light-driven p-n heterojunction photocatalyst for methylene blue degradation. Superlattice Microst 74:294–307

    Article  Google Scholar 

  13. Thalluri SM, Hernandez S, Bensaid S, Saracco G, Russo N (2016) Green-synthesized W- and Mo-doped BiVO4 oriented along the {040} facet with enhanced activity for the sun-driven water oxidation. Appl Catal B Environ 180:630–636

    Article  Google Scholar 

  14. Gu SN, Li WJ, Wang FZ, Wang SY, Zhou HL, Li HD (2015) Synthesis of buckhorn-like BiVO4 with a shell of CeOx nanodots: effect of heterojunction structure on the enhancement of photocatalytic activity. Appl Catal B 170–171:186–194

    Article  Google Scholar 

  15. Hong SJ, Lee S, Jang JS, Lee JS (2011) Heterojunction BiVO4/WO3 electrodes for enhanced photoactivity of water oxidation. Energy Environ Sci 4:1781–1787

    Article  Google Scholar 

  16. Yuan Y, Huang YH, Ma F, Zhang ZQ, Wei XM, Zhu GQ (2016) Structural stability, band structure and optical properties of different BiVO4 phases under pressure. J Mater Sci 51(14):6662–6673

    Article  Google Scholar 

  17. Navarro Yerga RM, Avarez Galvan MC, Del VF, Villoria JA, Fierro JL (2009) Water splitting on semiconductor catalysts under visible-light irradiation. Chem Sus Chem 2:471–485

    Article  Google Scholar 

  18. Liu GC, Jing Z, Zhang XB, Li XF, Liu H (2013) Hydrothermal synthesis and photocatalytic properties of Cu-doped BiVO4 microsheets. J Inorg Mater 28(3):287–294

    Article  Google Scholar 

  19. Hu Y, Li DZ, Zheng Y, Chen W, He YH, Shao Y, Fu XZ, Xiao GC (2011) BiVO4/TiO2 nanocrystalline heterostructure: a wide spectrum responsive photocatalyst towards the highly efficient decomposition of gaseous benzene. Appl Catal B Environ 104(1):30–36

    Article  Google Scholar 

  20. Fu YS, Sun XQ, Wang X (2011) BiVO4–graphene catalyst and its high photocatalytic performance under visible light irradiation. Mater Chem Phys 131(1):325–330

    Article  Google Scholar 

  21. Zhang MY, Shao CL, Li XH, Zhang P, Sun YY, Su CY, Zhang X, Ren JJ, Liu YC (2012) Carbon-modified BiVO4 microtubes embedded with Ag nanoparticles have high photocatalytic activity under visible light. Nanoscale 4(23):7501–7508

    Article  Google Scholar 

  22. Zhang AP, Zhang JZ (2010) Characterization and photocatalytic properties of Au/BiVO4 composites. J Alloys Compd 491(1):631–635

    Article  Google Scholar 

  23. Fan HM, Jiang TF, Li HY, Wang DJ, Wang LL, Zhai JL, He DQ, Wang P, Xie TF (2012) Effect of BiVO4 crystalline phases on the photoinduced carriers behavior and photocatalytic activity. J Phys Chem C 116(3):2425–2430

    Article  Google Scholar 

  24. Li DZ, Wang WZ, Jiang D, Zheng YL, Li XM (2015) Surfactant-free hydrothermal fabrication of monoclinic BiVO4 photocatalyst with oxygen vacancy by copper doping. RSC Adv 5:14374–14381

    Article  Google Scholar 

  25. Yin WJ, Wei SH, Aljassim MM, Turner J, Yan YF (2011) Doping properties of monoclinic BiVO4 studied by first-principles density-functional theory. Phys Rev B 83(15):155102(1)–155102-(11)

    Article  Google Scholar 

  26. Clark SJ, Segall MD, Pickard CJ, Hasnip PJ, Probert MJ, Refson K, Payne MC (2005) First principles methods using CASTEP. Z Fur Kristallogr 220:567–570

    Google Scholar 

  27. Segall MD, Lindan PLD, Probert MJ, Pickard CJ, Hasnip PJ, Clark SJ, Payne MC (2002) First-principles simulation: ideas, illustrations and the CASTEP code. J Phys Condens Matter 14:2717–2744

    Article  Google Scholar 

  28. Pfrommer BG, Côté M, Louie SG, Cohen ML (1997) Relaxation of crystals with the quasi-newton method. J Comput Phys 131:233–240

    Article  Google Scholar 

  29. Vanderbilt D (1990) Soft self-consistent pseudopotentials in a generalized eigenvalue formalism. Phys Rev B 41(11):7892–7895

    Article  Google Scholar 

  30. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  31. Monkhorst HJ, Pack JD (1976) Special points for Brillouin-zone integrations. Phys Rev B 13:5188–5192

    Article  Google Scholar 

  32. Ivanovskaya VV, Zobelli A, Wagner P, Heggie MI, Briddon PR, Rayson MJ, Ewels CP (2011) Low-energy termination of graphene edges via the formation of narrow nanotubes. Phys Rev Lett 107:065502(1)–065502(4)

    Article  Google Scholar 

  33. Huang YH, Jie WQ, Zhou Y, Zha GQ (2013) Structural stability, band structure and magnetic properties of ZnS and Zn0.75Cr0.25S under pressure. J Alloy Compd 549:184–189

    Article  Google Scholar 

  34. Yu R, Jiang YH, Feng J, Zhou RF, Zhang YQ, Zhou R (2013) The stability and elastic properties of NaCl-type MN (M 5 Ti, V, Zr, Nb, and Ta) compounds investigated by first principles. J Mater Sci 48(9):3443–3447

    Article  Google Scholar 

  35. Liu QJ, Liu ZT, Feng LP, Xu B (2009) First-principles study of structural, optical and elastic properties of cubic HfO2. Phys B 404(20):3614–3619

    Article  Google Scholar 

  36. Kube CM, Arguelles AP (2016) Bounds and self-consistent estimates of the elastic constants of polycrystals. Comput Geosci 95:118–122

    Article  Google Scholar 

  37. Liu QJ, Liu ZT, Feng LP (2010) First principles calculation of elastic constants, electronic structure and optical properties of tetragonal ZrO2. J China Three Gorges Univ 32:75–80

    Google Scholar 

  38. Huang YH, Jie WQ, Xu LY, Luo JN (2013) First principle study on the electronic, elastic and optical properties of ZnS (Se, Te). J Synth Cryst 42:1046–1053

    Google Scholar 

  39. Fan QY, Wei Q, Chai CC, Yan HY, Zhang MG, Lin ZZ, Zhang ZX, Zhang JQ, Zhang DY (2015) Structural, mechanical, and electronic properties of P3m1-BCN. J Phys Chem Solids 79:89–96

    Article  Google Scholar 

  40. Grundmann M (2010) The physics of semiconductors. Springer, Berlin, pp 775–776

    Google Scholar 

  41. Guo L, Zhang ST, Feng WJ, Hu G (2014) A first-principles study on the structural, elastic, electronic, and optical properties of CdRh2O4. J Mater Sci 49(3):1205–1214

    Article  Google Scholar 

  42. Cai MQ, Yin Z, Zhang MS (2003) First-principles study on structural and electronic properties of barium titanate. Appl Phys Lett 83(14):2805–2807

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Nos. 51302162 and 51471130) and sponsored by the China Scholarship Council.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yuhong Huang or Fei Ma.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, Y., Huang, Y., Ma, F. et al. Effects of oxygen vacancy on the mechanical, electronic and optical properties of monoclinic BiVO4 . J Mater Sci 52, 8546–8555 (2017). https://doi.org/10.1007/s10853-017-1069-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1069-7

Keywords

Navigation