Skip to main content
Log in

Cellulose nanofiber/cationic conjugated polymer hybrid aerogel sensor for nitroaromatic vapors detection

  • Polymers
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel porous aerogel of cellulose nanofiber (CNF)/cationic water-soluble poly[9,9-bis[3′-(N,N-dimethy)-N-ethylammonium)propyl)-2,7-fluorene-alt-1,4-phenylene]dibromide (CPFD) is prepared by freeze drying. CNF can effectively prevent aggregation of the conjugated polymer CPFD backbones. The CNF/CPFD hybrid aerogel is use for the detection of nitroaromatic (NAC) vapors. Due to the porous structure, the CNF/CPFD hybrid aerogel possesses a large number of accessible cavities, which could be sufficiently large to allow the diffusion of NAC vapors into the aerogel. As a result, the CNF/CPFD aerogel sensor shows high sensitivity toward NAC vapors. For 120-s exposure, the fluorescence quenching efficiency of the CNF/CPFD aerogel sensor toward 2,4-dinitrotoluene vapor is up to 85.9%, which is much larger than that of the spin-cast CPFD film. Furthermore, the sensing performance of the CNF/CPFD hybrid aerogel is not heavily dependent on the thickness, and the sensing process of the CNF/CPFD aerogel sensor is reversible.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. An N, Gonzalez CM, Sinelnikov R, Newman W, Sun S, Lockwood R, Veinot JGC, Meldrum A (2016) Detection of nitroaromatics in the solid, solution, and vapor phases using silicon quantum dot sensors. Nanotechnology. doi:10.1088/0957-4484/27/10/105501

    Google Scholar 

  2. Zarei AR, Ghazanchayi B (2016) Design and fabrication of optical chemical sensor for detection of nitroaromatic explosives based on fluorescence quenching of phenol red immobilized polyvinyl alcohol) membrane. Talanta 150:162–168

    Article  Google Scholar 

  3. Kandpal M, Bandela AK, Hinge VK, Rao VR, Rao CP (2013) Fluorescence and piezoresistive cantilever sensing of trinitrotoluene by an upper-rim tetrabenzimidazole conjugate of Calix 4 arene and delineation of the features of the complex by molecular dynamics. ACS Appl Mater Int 5(24):13448–13456

    Article  Google Scholar 

  4. Salinas Y, Martinez-Manez R, Marcos MD, Sancenon F, Costero AM, Parra M, Gil S (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41(3):1261–1296

    Article  Google Scholar 

  5. Bandela AK, Bandaru S, Rao CP (2015) A fluorescent 1,3-diaminonaphthalimide conjugate of Calix 4 arene for sensitive and selective detection of trinitrophenol: spectroscopy, microscopy, and computational studies, and its applicability using cellulose strips. Chem-Eur J 21(38):13364–13374

    Article  Google Scholar 

  6. Toal SJ, Trogler WC (2006) Polymer sensors for nitroaromatic explosives detection. J Mater Chem 16(28):2871–2883

    Article  Google Scholar 

  7. Walsh ME (2001) Determination of nitroaromatic, nitramine, and nitrate ester explosives in soil by gas chromatography and an electron capture detector. Talanta 54(3):427–438

    Article  Google Scholar 

  8. Sylvia JM, Janni JA, Klein JD, Spencer KM (2000) Surface-enhanced Raman detection of 1,4-dinitrotoluene impurity vapor as a marker to locate landmines. Anal Chem 72(23):5834–5840

    Article  Google Scholar 

  9. Sun X, Wang Y, Lei Y (2015) Fluorescence based explosive detection: from mechanisms to sensory materials. Chem Soc Rev 44(22):8019–8061

    Article  Google Scholar 

  10. Li J, Kendig CE, Nesterov EE (2007) Chemosensory performance of molecularly imprinted fluorescent conjugated polymer materials. J Am Chem Soc 129(51):15911–15918

    Article  Google Scholar 

  11. Zhou L-L, Li M, Lu H-Y, Chen C-F (2016) Benzo 5 helicene-based conjugated polymers: synthesis, photophysical properties, and application for the detection of nitroaromatic explosives. Polym Chem 7(2):310–318

    Article  Google Scholar 

  12. Niu Q, Gao K, Wu W (2014) Cellulose nanofibril based graft conjugated polymer films act as a chemosensor for nitroaromatic. Carbohyd Polym 110:47–52

    Article  Google Scholar 

  13. Yang JS, Swager TM (1998) Fluorescent porous polymer films as TNT chemosensors: electronic and structural effects. J Am Chem Soc 120(46):11864–11873

    Article  Google Scholar 

  14. Leng H, Niu Q, Wu W (2013) Insoluble porous conjugated polymer films via phase separation and photo-crosslinking for the trace detection of 2,4-dinitrotoluene. Polym Int 62(8):1187–1191

    Article  Google Scholar 

  15. Isogai A, Saito T, Fukuzumi H (2011) TEMPO-oxidized cellulose nanofibers. Nanoscale 3(1):71–85

    Article  Google Scholar 

  16. Fukuzumi H, Saito T, Wata T, Kumamoto Y, Isogai A (2009) Transparent and high gas barrier films of cellulose nanofibers prepared by TEMPO-mediated oxidation. Biomacromol 10(1):162–165

    Article  Google Scholar 

  17. Saito T, Uematsu T, Kimura S, Enomae T, Isogai A (2011) Self-aligned integration of native cellulose nanofibrils towards producing diverse bulk materials. Soft Matter 7(19):8804–8809

    Article  Google Scholar 

  18. Zheng Q, Cai Z, Ma Z, Gong S (2015) Cellulose nanofibril/reduced graphene oxide/carbon nanotube hybrid aerogels for highly flexible and all-solid-state supercapacitors. Acs Appl Mater Int 7(5):3263–3271

    Article  Google Scholar 

  19. Feng J, Li Y, Yang M (2010) Conjugated polymer-grafted silica nanoparticles for the sensitive detection of TNT. Sens Actuator B Chem 145(1):438–443

    Article  Google Scholar 

  20. Wang X, Guo Y, Li D, Chen H, R-C Sun (2012) Fluorescent amphiphilic cellulose nanoaggregates for sensing trace explosives in aqueous solution. Chem Commun 48(45):5569–5570

    Article  Google Scholar 

  21. Ding L, Liu Y, Cao Y, Wang L, Xin Y, Fang Y (2012) A single fluorescent self-assembled monolayer film sensor with discriminatory power. J Mater Chem 22(23):11574–11582

    Article  Google Scholar 

  22. Huang F, Wu HB, Wang D, Yang W, Cao Y (2004) Novel electroluminescent conjugated polyelectrolytes based on polyfluorene. Chem Mater 16(4):708–716

    Article  Google Scholar 

  23. Gao K, Shao Z, Wang X, Zhang Y, Wang W, Wang F (2013) Cellulose nanofibers/multi-walled carbon nanotube nanohybrid aerogel for all-solid-state flexible supercapacitors. RSC Adv 3(35):15058–15064

    Article  Google Scholar 

  24. Leng H, Wu W (2012) Synthesis of a novel fluorene-based conjugated polymer with pendent bulky caged adamantane moieties and its application in the detection of trace DNT explosives. React Funct Polym 72(3):206–211

    Article  Google Scholar 

  25. Liu T, Ding L, Zhao K, Wang W, Fang Y (2012) Single-layer assembly of pyrene end-capped terthiophene and its sensing performances to nitroaromatic explosives. J Mater Chem 22(3):1069–1077

    Article  Google Scholar 

  26. Gao K, Shao Z, Li J, Wang X, Peng X, Wang W, Wang F (2013) Cellulose nanofiber-graphene all solid-state flexible supercapacitors. J Mater Chem A 1(1):63–67

    Article  Google Scholar 

  27. Cornil J, dos Santos DA, Crispin X, Silbey R, Brédas JL (1998) Influence of interchain interactions on the absorption and luminescence of conjugated oligomers and polymers: a quantum-chemical characterization. J Am Chem Soc 120(6):1289–1299

    Article  Google Scholar 

  28. Pella PA (1976) Generator for producing trace vapor concentrations of 2,4,6-trinitrotoluene, 2,4-dinitrotoluene, and ethylene glycol dinitrate for calibrating explosives vapor detectors. Anal Chem 48(11):1632–1637

    Article  Google Scholar 

  29. Zhu W, Tao S, C-A Tao, Li W, Lin C, Li M, Wen Y, Li G (2011) Hierarchically imprinted porous films for rapid and selective detection of explosives. Langmuir 27(13):8451–8457

    Article  Google Scholar 

  30. Wang D-H, Cui Y-Z, Tao F-R, Niu Q-F, Li T-D, Xu H (2016) A novel film of conjugated polymer grafted onto gelatin for detecting nitroaromatics vapor with excellent inhibiting photobleaching. Sens Actuator B Chem 225:319–326

    Article  Google Scholar 

  31. He G, Zhang G, Lue F, Fang Y (2009) Fluorescent film sensor for vapor-phase nitroaromatic explosives via monolayer assembly of oligo(diphenylsilane) on glass plate surfaces. Chem Mater 21(8):1494–1499

    Article  Google Scholar 

  32. Beyazkilic P, Yildirim A, Bayindir M (2014) Formation of pyrene excimers in mesoporous ormosil thin films for visual detection of nitro-explosives. ACS Appl Mater Int 6(7):4997–5004

    Article  Google Scholar 

  33. Salinas Y, Martinez-Manez R, Marcos MD, Sancenon F, Costero AM, Parra M, Gil S (2012) Optical chemosensors and reagents to detect explosives. Chem Soc Rev 41(3):1261–1296

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lang Chen.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qin, J., Chen, L., Zhao, C. et al. Cellulose nanofiber/cationic conjugated polymer hybrid aerogel sensor for nitroaromatic vapors detection. J Mater Sci 52, 8455–8464 (2017). https://doi.org/10.1007/s10853-017-1065-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1065-y

Keywords

Navigation