Advertisement

Journal of Materials Science

, Volume 52, Issue 15, pp 8998–9005 | Cite as

MAS-NMR support for Hench model in the case of bioactive glass microspheres

  • S. SimonEmail author
  • D. Cacaina
  • M. Vasilescu
  • H. Ylänen
  • M. Hupa
In Honor of Larry Hench

Abstract

The structural changes occurred in bioactive glass microspheres belonging to the system SiO2–Na2O–P2O5–CaO–K2O–MgO incorporating yttrium were investigated before and after soaking in simulated body fluid (SBF) by X-ray diffraction (XRD) and 31P and 29Si magic angle sample spinning nuclear magnetic resonance (MAS-NMR). The addition of yttrium to the bioactive glass composition induces changes in the behavior of the glass microspheres in SBF. The XRD analysis proves that after the immersion in SBF a crystalline hydroxyapatite-like phase is developed on the microspheres surface. The 29Si and 31P MAS-NMR results show that silicate species with two and three bridging oxygens per SiO4 tetrahedra and PO4 monomeric units are present in the glass structure. After immersion in SBF, new silicate species with four bridging oxygens appear as result of silica-gel layer formed on microspheres surface. The formation of crystalline hydroxyapatite-type layer is reflected by the occurrence of narrow components in 31P MAS-NMR spectra. The NMR results support the Hench model for bioactive glasses behavior in biological environments.

Keywords

Yttrium Y2O3 Simulated Body Fluid Bioactive Glass Glass Microsphere 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgement

This study was supported by UEFISCDI-Romania, in framework of PN-II PCCA 78/2012 Project.

References

  1. 1.
    Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978. doi: 10.1007/s10856-006-0432-z CrossRefGoogle Scholar
  2. 2.
    Hench LL, Roki N, Fenn MB (2014) Bioactive glasses: importance of structure and properties in bone regeneration. J Mol Struct 1073:24–30. doi: 10.1016/j.molstruc.2014.03.066 CrossRefGoogle Scholar
  3. 3.
    Miguez-Pacheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15. doi: 10.1016/j.actbio.2014.11.004 CrossRefGoogle Scholar
  4. 4.
    Miguez-Pacheco V, Greenspan D, Larry L, Hench LL, Boccaccini AR (2015) Bioactive glasses in soft tissue repair. Am Ceram Soc Bull 94:27–31Google Scholar
  5. 5.
    Hench LL (1991) Bioceramics: from concept to clinic. J Am Ceram Soc 74:1487–1510. doi: 10.1111/j.1151-2916.1991.tb07132.x CrossRefGoogle Scholar
  6. 6.
    Day DE, Day TE (1993) Radiotherapy glasses. In: Hench LL, Wilson J (eds) Introduction to Bioceramics, vol 1. World Scientific, Singapore, pp 305–317CrossRefGoogle Scholar
  7. 7.
    Nijsen JFW, van het Schip AD, Hennink WE, Rook DW, van Rijk PP, de Klerk JMH (2002) Advances in nuclear oncology: microspheres for internal radionuclide therapy in liver tumours. Curr Med Chem 9:73–82. doi: 10.2174/0929867023371454 CrossRefGoogle Scholar
  8. 8.
    Sofou S (2008) Radionuclide carriers for targeting of cancer. Int J Nanomedicine 3:181–199CrossRefGoogle Scholar
  9. 9.
    Elgayar I, Aliev AE, Boccaccini AR, Hill RG (2005) Structural analysis of bioactive glasses. J Non-Cryst Solids 351(2):173–2183. doi: 10.1016/j.jnoncrysol.2004.07.067 CrossRefGoogle Scholar
  10. 10.
    Leonova E, Izquierdo-Barba I, Arcos D, Lopez-Noriega A, Hedin N, Vallet-Regi M, Eden M (2008) Multinuclear solid-state NMR studies of ordered mesoporous bioactive glasses. J Phys Chem C 112:5552–5562. doi: 10.1021/jp7107973 CrossRefGoogle Scholar
  11. 11.
    Mercier C, Follet-Houttemane C, Pardini A, Revel B (2011) Influence of P2O5 content on the structure of SiO2–Na2O–CaO–P2O5 bioglasses by 29Si and 31P MAS-NMR. J Non-Cryst Solids 357:3901–3909. doi: 10.1016/j.jnoncrysol.2011.07.042 CrossRefGoogle Scholar
  12. 12.
    Mathew R, Turdean-Ionescu C, Stevensson B, Izquierdo-Barba I, Garcia A, Arcos D, Vallet-Regi M, Eden M (2013) Direct probing of the phosphate-ion distribution in bioactive silicate glasses by solid-state NMR: evidence for transitions between random/clustered scenarios. Chem Mater 25:1877–1885. doi: 10.1021/cm400487a CrossRefGoogle Scholar
  13. 13.
    McMillan P (1984) Structural studies of silicate glasses and melts-applications and limitations of Raman spectroscopy. Am Miner 69:622–644Google Scholar
  14. 14.
    Galliano PG, Porto Lopez JM, Varetti EL, Sobrados I, Sanz J (1994) Analysis by nuclear magnetic resonance and raman spectroscopies of the structure of bioactive alkaline-earth silicophosphate glasses. Mater Res Bull 29:1297–1306. doi: 10.1016/0025-5408(94)90154-6 CrossRefGoogle Scholar
  15. 15.
    Brow RK (2000) Review: the structure of simple phosphate glasses. J Non Cryst Solids 263–264:1–28. doi: 10.1016/S0022-3093(99)00620-1 CrossRefGoogle Scholar
  16. 16.
    Ciceo Lucacel R, Maier M, Simon V (2010) Structural and in vitro characterization of TiO2–CaO–P2O5 bioglasses. J Non-Cryst Solids 356:2869–2874. doi: 10.1016/j.jnoncrysol.2010.09.019 CrossRefGoogle Scholar
  17. 17.
    Cacaina D, Ylanen H, Simon S, Hupa M (2008) The behaviour of selected yttrium containing bioactive glass microspheres in simulated body environments. J Mater Sci Mater Med 19:1225–1233. doi: 10.1007/s10856-007-3163-x CrossRefGoogle Scholar
  18. 18.
    Kokubo T, Kushitani H, Sakka S, Kitsugi T, Yamamuro T (1990) Solutions able to reproduce in vivo surface-structure changes in bioactive glass–ceramic A-W3. J Biomed Mater Res 24:721–734. doi: 10.1002/jbm.820240607 CrossRefGoogle Scholar
  19. 19.
    Massiot D, Fayon F, Capron M, King I, LeCalve S, Alonso B, Durand J-O, Bujoli B, Gan Z, Hoatson G (2002) Modelling one-and two- dimensional solid-state NMR spectra. Magn Reson Chem 40:70–76. doi: 10.1002/mrc.984 CrossRefGoogle Scholar
  20. 20.
    Roether JA, Gough JE, Boccaccini AR, Hench LL, Maquet V, Jerome R (2002) Novel bioresorbable and bioactive composites based on bioactive glass and polylactide foams for bone tissue engineering. J Mater Sci Mater Med 13:1207–1214. doi: 10.1023/A:1021166726914 CrossRefGoogle Scholar
  21. 21.
    Olivier L, Yuan X, Cormack AN, Jager C (2001) Combined 29Si double quantum NMR and MD simulation studies of network connectivities of binary Na2O·SiO2 glasses: new prospects and problems. J Non-Cryst Solids 293–295:53–66. doi: 10.1016/S0022-3093(01)00827-4 CrossRefGoogle Scholar
  22. 22.
    Framery E, Mutin PH (2002) 29Si MAS-NMR study of silica gels and xerogels: influence of the catalyst. J Sol-Gel Techn 24:191–195. doi: 10.1023/A:1015391922572 CrossRefGoogle Scholar
  23. 23.
    Imbach J, Brunet F, Charpentier T, Virlet J (2002) Synthesis and NMR characterization (1H and 31P MAS) of the fluorine-free hydroxylapatite-britholite-(Y) series. Am Miner 87:947–957. doi: 10.2138/am-2002-0718 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • S. Simon
    • 1
    Email author
  • D. Cacaina
    • 1
    • 2
  • M. Vasilescu
    • 1
  • H. Ylänen
    • 2
  • M. Hupa
    • 3
  1. 1.Faculty of Physics and Interdisciplinary Research Institute on Bio-Nano-SciencesBabes-Bolyai UniversityCluj-NapocaRomania
  2. 2.Turku Biomaterials CentreUniversity of TurkuTurkuFinland
  3. 3.Process Chemistry CentreÅbo Akademi UniversityTurkuFinland

Personalised recommendations