Skip to main content

Advertisement

Log in

The effect of surfactants in the silsesquioxane solution for LbL films assembly

  • Chemical routes to materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The interaction of surfactants and hydrophobic polymers in solution has attracted substantial interest due to the broad application in industry. In this study, the interactions of the nonionic surfactant polyethylene glycol-p-(1,1,3,3 tetramethylbutyl)-phenyl ether (Triton X) and anionic surfactant sodium dodecyl sulfate (SDS) with a cationic polymer 3-chloride-n-propylpyridinium silsesquioxane (SiPy+Cl) and their effects on the layer-by-layer (LbL) film assembly with nickel tetrasulfonated phthalocyanine (NiTsPc) have been analyzed by surface tension, viscosity, and Brewster angle microscopy. As Triton X and SDS surfactants are inserted in the solution containing the polycation SiPy+Cl, they are immediately incorporated in the hydrophobic nanodomains present in the silsesquioxane skeleton. The association between polyelectrolytes and oppositely charged surfactants starts at very low surfactant concentrations far below the critical micelle concentration, named critical aggregation concentration (cac), which was determined for both surfactants in the presence of SiPy+Cl (cac Triton X = 2.4 × 10−6 and SDS = 8.2 × 10−7 mol L−1). The coexistence of mixed and pure micelles containing only Triton X and SDS also occurs in higher surfactant concentrations. The implication of these aggregates adsorption on the surface was analyzed in thin films by using the LbL technique. Multilayered films were obtained in presence of surfactants, (T-SiPy/NiTsPc) n or (S-SiPy/NiTsPc) n to compare with LbL films in absence of surfactant (SiPy/NiTsPc) n , and these films were characterized by UV–Vis, FTIR, and Raman spectroscopies to analyze the molecular interactions and to investigate the presence of specific interactions between the polyelectrolytes. The formation of LbL film in the architectures (T-SiPy/NiTsPc) n or (S-SiPy/NiTsPc) n is more efficient in relation to (SiPy/NiTsPc) n LbL films since the presence of the surfactants causes a greater amount of material to be deposited on each bilayer formed. The results of UV–Vis indicate that the film in the presence of SDS has a higher amount of material added to each bilayer. The electrochemical studies of (S-SiPy/NiTsPc)3 film show that the charge transfer resistance is lower than the one observed for the other architectures. Thus, the characteristic hopping electron effect of LbL film may be responsible for lower capacitance and lower resistance of the films. When the surfactant SDS is present, a higher oxidation peak current of dopamine is seen.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Xiaokong L (2008) Layer-by-layer-assembled multilayer films of polyelectrolyte-stabilized surfactant micelles for the incorporation of noncharged organic dyes. Langmuir 24(22):12986–12989

    Article  Google Scholar 

  2. Trindade MAG, Bilibio U, Zanoni MVB (2014) Enhancement of voltammetric determination of quinizarine based on the adsorption at surfactant-adsorbed-layer in disposable electrodes. Fuel 136:201–207

    Article  Google Scholar 

  3. Sergeeva IP (2011) Layer-by-layer adsorption of polyelectrolyte and surfactant and adsorption of their complexes on solid surface. Colloid J 73(3):378–383

    Article  Google Scholar 

  4. Rodriguez R, Vargas S, Fernandez-Valesco DA (1998) Reverse micelle systems composed of water, Triton X-100, and phospholipids in organic solvents. J Colloid Interface Sci 197:21–28

    Article  Google Scholar 

  5. Okuzaki H, Osada Y (1995) Role and effect of cross-linkage on the polyelectrolyte-surfactant interactions. Macromolecules 28:4554–4557

    Article  Google Scholar 

  6. Dedinaite A, Claesson M (2000) Interfacial properties of aggregates formed by cationic polyelectrolyte and anionic surfactant. Langmuir 16(4):1951–1959

    Article  Google Scholar 

  7. D’Arrigo JS (1983) Biological surfactants stabilizing natural microbubbles in aqueous media. Adv Coll Interface Sci 19(4):253–307

    Article  Google Scholar 

  8. Macdonald PM (1999) 2 H NMR and polyelectrolyte–surfactant interactions: from micelles to monolayers to membranes. Colloids Surf A Physicochem Eng Asp 147:115–131

    Article  Google Scholar 

  9. Lee LT (1999) Polymer–surfactant interactions: neutron scattering and reflectivity. Curr Opin Colloid Interface Sci 4:205–213

    Article  Google Scholar 

  10. Abraham T, Giasson S (2001) Interactions of partially screened polyelectrolyte layers with oppositely charged surfactant in confined environment. Colloids Surf A Physicochem Eng Asp 180:103–110

    Article  Google Scholar 

  11. Goddard ED (2002) Polymer/surfactant interaction: interfacial aspects. J Colloid Interface Sci 258:228–235

    Article  Google Scholar 

  12. Yan P, Xiao JX (2004) Polymer–surfactant interaction: differences between alkyl sulfate and alkyl sulfonate. Colloids Surf A Physicochem Eng Asp 244:39–44

    Article  Google Scholar 

  13. Wang H, Wang Y, Yan H (2006) Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values. Langmuir 22:1526–1533

    Article  Google Scholar 

  14. Nakata S (2016) Ability of sodium dodecyl sulfate to transiently stabilize a phospholipid molecular layer. Thin Solid Films 615:215–220

    Article  Google Scholar 

  15. Paria S, Khilar K (2004) A review on experimental studies of surfactant adsorption at the hydrophilic solid–water interface. Adv Coll Interface Sci 110:75–95

    Article  Google Scholar 

  16. Deo P, Somasundaran P (2005) Interactions of hydrophobically modified polyelectrolytes with nonionic surfactants. Langmuir 21(9):3950–3956

    Article  Google Scholar 

  17. Yan P, Jhin C, Wang C (2005) Effect of surfactant head group size on polyelectrolyte–surfactant interactions: steady-state and time-resolved fluorescence study. J Colloid Interface Sci 282:188–192

    Article  Google Scholar 

  18. Swati D, Girigoswami A, Susmita D (2005) Fluorescence probing of albumin–surfactant interaction. J Colloid Interface Sci 285:562–573

    Article  Google Scholar 

  19. Mesa C (2005) Polymer–surfactant and protein–surfactant interactions. J Colloid Interface Sci 286:148–157

    Article  Google Scholar 

  20. Johal M, Chiareli PA (2007) Polymer–surfactant complexation in polyelectrolyte multilayer assemblies. Soft Matter 3:34–46

    Article  Google Scholar 

  21. Li Y, Zhou J, Zhang K (2007) Gold nanoparticle multilayer films based on surfactant films as a template: preparation, characterization, and application. J Chem Phys 126:127

    Google Scholar 

  22. Griffiths PC, Cheung YF (2002) Interaction between surfactants and gelatin in aqueous solutions. Mater Sci Technol 18:591–599

    Article  Google Scholar 

  23. Dal-Bó AG (2007) Associação de Micelas Mistas de Surfactantes Aniônicos com o polímero Hidrofobicamente Modificado ETIL (Hidroxietil) Celulose (EHEC). Universidade Federal de Santa Catarina, Florianópolis

    Google Scholar 

  24. Astruc D, Lu F, Aranzaes JR (2005) Nanoparticles as recyclable catalysts: the frontier between homogeneous and heterogeneous catalysis. Angew Chem Int Ed 44(48):7852–7872

    Article  Google Scholar 

  25. Piculell L, Egermayer M, Sjöström J (2003) Rheology of mixed solutions of an associating polymer with a surfactant. Why are different surfactants different? Langmuir 19(9):3643–3649

    Article  Google Scholar 

  26. Lin J-H, Hou S-S (2014) Effects of organic salts on polymer–surfactant interactions: roles of Bu4NBr and Pr4NBr in PVP–SDS complexation. Macromolecules 47(18):6418–6429

    Article  Google Scholar 

  27. Griffiths PC, Hirst N, Paul A, King SM, Heenan RK, Farley R (2004) Effect of ethanol on the interaction between poly(vinylpyrrolidone) and sodium dodecyl sulfate. Langmuir 20(16):6904–6913

    Article  Google Scholar 

  28. Alfaya RVS, Gushiken Y, Alfaya AAS (2003) 3-n-Propyl-1-azonia-4-azabicyclo [2.2. 2] octanechloride silsesquioxane: a new water soluble polymer. J Sol-Gel Sci Technol 28(1):51–56

    Article  Google Scholar 

  29. Wang H, Wang Y, Yan H (2006) Binding of sodium dodecyl sulfate with linear and branched polyethyleneimines in aqueous solution at different pH values. Langmuir 22:1526–1533

    Article  Google Scholar 

  30. Ashan Y, Catravas GN (1980) Highly reactive impurities in Triton X-100-100 and Brij 35: partial characterization and removal. Anal Biochem 109:55–62

    Article  Google Scholar 

  31. Sigma Aldrich, “Triton™ X-100,” Sigma Aldrich (Online). http://www.sigmaaldrich.com/catalog/product/sial/x100?lang=pt&region=BR&gclid=Cj0KEQjw2ua8BRDeusOkl5qth4QBEiQA8BpQcOwI7459zYepc84mjHW14TLSbqe56VJVByM9D43vQjcaAv6_8P8HAQ. Accessed 03 Feb 2012

  32. Sigma Aldrich, “Sodium Dodecyl Sulfate,” Sigma Aldrich (Online). http://www.sigmaaldrich.com/catalog/product/SIAL/436143?lang=pt&region=BR&gclid=Cj0KEQjw2ua8BRDeusOkl5qth4QBEiQA8BpQcIPCf0LP-S6smIWhiOU4PZoQk_FasGtA4VGiaLBZ4b8aAuep8P8HAQ. Accessed 02 Mar 2013

  33. Nazrul IM, Kato T (2005) Effect of temperature on the surface phase behavior and micelle formation. J Colloid Interface Sci 282:142–148

    Article  Google Scholar 

  34. Dos Santos V, Canestraro CD, Zucolotto V, Fujiwara ST, Gushikem Y et al (2011) Silsesquioxane as a new building block material for modified electrodes fabrication and application as neurotransmitters sensors. J Nanosci Nanotechnol 11(4):3499–3508

    Article  Google Scholar 

  35. De Jesus CG (2013) Glucose biosensor based on the highly efficient immobilization of glucose oxidase on layer-by-layer films of silsesquioxane polyelectrolyte. Sens Actuators B Chem 186:44–51

    Article  Google Scholar 

  36. Erdmann CAIJVAG (2013) Electrochemical immunosensor for diagnostic of parasitical human diseases. ECS Trans 50(12):393–399

    Article  Google Scholar 

  37. Zucolotto V, Ferreira M, Cordeiro MR, Constantino CJ, Balogh DT, Zanatta AR et al (2003) Unusual interactions binding iron tetrasulfonated phthalocyanine and poly(allyalimine hydrochloride) in layer-by-layer films. J Phys Chem B 107:3733

    Article  Google Scholar 

  38. Zucolotto V, Ferreira M, Cordeiro MR, Constantino CJ, Moreira WC, Oliveira ON et al (2006) Nanoscale processing of polyaniline and phthalocyanines for sensing applications. Sens Actuators B Chem 113:809

    Article  Google Scholar 

  39. Siqueira JR (2006) Physicochemical properties and sensing ability of mettalophthalocyanines/chitosan nanocomposites. J Phys Chem B 110:22690–22694

    Article  Google Scholar 

  40. Zampa MF, de Brito ACF, Kitagawa IL, Constantino CJ, Oliveira ON, da Cunha HN et al (2008) Natural gum assisted phthalocyanine immobilization in electroactive nanocomposites physicochemical characterization and sensing applications. Biomacromol 8:3408–3413

    Article  Google Scholar 

  41. Kitagawa IL (2009) Caracterização por espectroscopia vibracional de filmes “Layer-by-Layer” contendo ftalocianina, polímeros condutores e gomas naturais. Dissertação de mestrado, UNESP, São Paulo

    Google Scholar 

  42. Bertoncello PPM (2008) An investigation of the self-aggregation properties of sulfonated copper(II) phthalocyanine thin films. Colloids Surf 321:106–112

    Article  Google Scholar 

  43. Dos Santos V, de Jesus CG, Dos Santos M, Canestraro CD, Zucolotto V, Fujiwara ST et al (2012) Platinum nanoparticles incorporated in silsesquioxane for use in LbL films for the simultaneous detection of dopamine and ascorbic acid. J Nanopart Res 14(9):1–11

    Google Scholar 

  44. Santos AC, Zucolotto V, Constantino CJ, Cunha HN, dos Santos JR, Eiras C et al (2007) Electroactive LbL films of metallic phthalocyanines and poly(o-methoxyaniline) for sensing. J Solid State Eletrochem 11:1505–1510

    Article  Google Scholar 

  45. Zagal HJ, Griveau S, Silva FJ et al (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254:2755–2791

    Article  Google Scholar 

  46. Woojung C, Naito M, Fujii R, Morisue M, Fujiki M (2009) Preparation of phthlocyanine thin film via layer-by-layer assembly. Thin Solid Films 518:625–628

    Article  Google Scholar 

  47. Johal MS, Ozer BH, Casson JL, St. John A, Robinson JM, Wang HL (2004) Coadsorption of sodium dodecyl sulfate and a polyanion onto poly(ethylenimine) in multilayered thin films. Langmuir 20:2792–2796

    Article  Google Scholar 

  48. Zagal HJ, Griveau S, Silva FJ et al (2010) Metallophthalocyanine-based molecular materials as catalysts for electrochemical reactions. Coord Chem Rev 254:2755–2791

    Article  Google Scholar 

  49. Spadavecchia J, Ciccarella G, Stomeo T (2004) Variation in the optical sensing responses toward vapors of porphyrin/phthalocyanine hybrid thin films. Chem Mater 16:2083

    Article  Google Scholar 

  50. Aroca R, Thedchanamoorthy A (1995) Vibrational studies of molecular organization of evaporated phthalocyanine thin solid films. Chem Mater 7:69

    Article  Google Scholar 

  51. Kumaran N, Veneman PA, Minch BA et al (2010) Self organized thin films of H-bonded phthalocyanines: characterization of estructure and electrical properties on nanometer leghtescales. Chem Mater 22:2491–2501

    Article  Google Scholar 

Download references

Acknowledgements

The financial support from CNPq, CLABMU-UEPG, INEO (CNPq) and nBioNet/CAPES (Brazil) is gratefully acknowledged. The authors also would like to thanks the Bernhard Gross research group - Instituto de Física de São Carlos—USP.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Karen Wohnrath.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

de Campos Intema, R., Wrobel, E.C., Fujiwara, S.T. et al. The effect of surfactants in the silsesquioxane solution for LbL films assembly. J Mater Sci 52, 7647–7663 (2017). https://doi.org/10.1007/s10853-017-1048-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1048-z

Keywords