Journal of Materials Science

, Volume 52, Issue 13, pp 8311–8320 | Cite as

Novel titanium dioxide–graphene–activated carbon ternary nanocomposites with enhanced photocatalytic performance in rhodamine B and tetracycline hydrochloride degradation

  • Lu-Lu Qu
  • Na Wang
  • Yan-Yan Li
  • Dan-Dan Bao
  • Guo-Hai Yang
  • Hai-Tao Li
Original Paper


A novel ternary nanocomposite consisting of activated carbon (AC) and titanium dioxide (TiO2) decoration in the presence of reduced graphene oxide (TiO2–rGO–AC) was fabricated by a facile hydrothermal synthesis method for use as a high-performance photocatalyst. The as-prepared TiO2–rGO–AC nanocomposites were characterized by X-ray diffraction (XRD), scanning electron microscopy, transmission electron microscopy, and UV–Vis diffuse reflectance spectroscopy. The results demonstrated that the TiO2 and activated carbon were well dispersed on the rGO surface. The photocatalytic performance of the TiO2–rGO–AC nanocomposite was evaluated as a catalyst for the photodegradation of rhodamine B. The degradation rate was 3.4 times higher than that of pure TiO2 under simulated solar light irradiation. The enhancement of photocatalytic performance is attributed to the adsorption of AC which significantly increased the organic molecule concentration near the catalytic surface, allowing the effective transfer and separation of photogenerated electrons. TiO2–rGO–AC photocatalyst is also effective for the degradation of tetracycline in aqueous solution, suggesting wide application of these nanocomposite materials in various fields including air purification and wastewater treatment.

Supplementary material

10853_2017_1047_MOESM1_ESM.docx (888 kb)
Supplementary material 1 (DOCX 888 kb)


  1. 1.
    Huang Y, Ho SSH, Lu Y, Niu R, Xu L, Cao J, Lee S (2016) Removal of indoor volatile organic compounds via photocatalytic oxidation: a short review and prospect. Molecules 21:56CrossRefGoogle Scholar
  2. 2.
    Lin Y, Li D, Hu J, Xiao G, Wang J, Li W, Fu X (2012) Highly efficient photocatalytic degradation of organic pollutants by PANI-modified TiO2 composite. J Phys Chem C 116:5764–5772CrossRefGoogle Scholar
  3. 3.
    Leary R, Westwood A (2011) Carbonaceous nanomaterials for the enhancement of TiO2 photocatalysis. Carbon 49:741–772CrossRefGoogle Scholar
  4. 4.
    Zhu P, Nair AS, Peng SJ, Yang SY, Ramakrishna S (2012) Facile fabrication of TiO2–graphene composite with enhanced photovoltaic and photocatalytic properties by electrospinning. ACS Appl Mater Interfaces 4:581–585CrossRefGoogle Scholar
  5. 5.
    Pelaez M, Nolan NT, Pillai SC, Seery MK, Falaras P, Kontos AG, Entezari MH (2012) A review on the visible light active titanium dioxide photocatalysts for environmental applications. Appl Catal B Environ 125:331–349CrossRefGoogle Scholar
  6. 6.
    Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25–Graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRefGoogle Scholar
  7. 7.
    Xiang Q, Yu J, Jaroniec M (2012) Graphene-based semiconductor photocatalysts. Chem Soc Rev 41:782–796CrossRefGoogle Scholar
  8. 8.
    Liu SW, Yu JG, Jaroniec M (2010) Tunable photocatalytic selectivity of hollow TiO2 microspheres composed of anatase polyhedra with exposed 001 facets. J Am Chem Soc 132:11914–11916CrossRefGoogle Scholar
  9. 9.
    Yang HG, Sun CH, Qiao SZ, Zou J, Liu G, Smith SC, Cheng HM, Lu GQ (2008) Anatase TiO2 single crystals with a large percentage of reactive facets. Nature 453:638–641CrossRefGoogle Scholar
  10. 10.
    Ksibi M, Rossignol S, Tatibouet JM, Trapalis C (2008) Synthesis and solid characterization of nitrogen and sulfur-doped TiO2 photocatalysts active under near visible light. Mater Lett 62:4204–4206CrossRefGoogle Scholar
  11. 11.
    Park JH, Kim S, Bard AJ (2006) Novel carbon-doped TiO2 nanotube arrays with high aspect ratios for efficient solar water splitting. Nano Lett 6:24–28CrossRefGoogle Scholar
  12. 12.
    Yu JG, Qi LF, Jaroniec M (2010) Hydrogen production by photocatalytic water splitting over Pt/TiO2 nanosheets with exposed (001) facets. J Phys Chem C 114:13118–13125CrossRefGoogle Scholar
  13. 13.
    Xiang QJ, Yu JG, Cheng B, Ong HC (2010) Microwave-hydrothermal preparation and visible-light photoactivity of plasmonic photocatalyst Ag–TiO2 nanocomposite hollow spheres. Chem Asian J 5:1466–1474Google Scholar
  14. 14.
    Woan K, Pyrgiotakis G, Sigmund W (2009) Photocatalytic carbon-nanotube–TiO2 composites. Adv Mater 21:2233–2239CrossRefGoogle Scholar
  15. 15.
    Yu JG, Zhang J, Jaroniec M (2010) Preparation and enhanced visible-light photocatalytic H2-production activity of CdS quantum dots-sensitized Zn1−xCdxS solid solution. Green Chem 12:1611–1614CrossRefGoogle Scholar
  16. 16.
    Zhang XY, Li HP, Cui XL, Lin YJ (2010) Graphene/TiO2 nanocomposites: synthesis, characterization and application in hydrogen evolution from water photocatalytic splitting. J Mater Chem 20:2801–2806CrossRefGoogle Scholar
  17. 17.
    Przepiorski J, Yoshizawa N, Yamada Y (2001) Activated carbons containing TiO2: characterization and influence of a preparation method on the state of TiO2 supported. J Mater Sci 36:4249–4257. doi:10.1023/A:1017941610608 CrossRefGoogle Scholar
  18. 18.
    Perera SD, Mariano RG, Vu K, Nour N, Seitz O, Chabal Y, Balkus KJ (2012) Hydrothermal synthesis of graphene–TiO2 nanotube composites with enhanced photocatalytic activity. ACS Catal 2:949–956CrossRefGoogle Scholar
  19. 19.
    Lightcap IV, Kosel TH, Kamat PV (2010) Anchoring semiconductor and metal nanoparticles on a two-dimensional catalyst mat. Storing and shuttling electrons with reduced graphene oxide. Nano Lett 10:577–583CrossRefGoogle Scholar
  20. 20.
    Prezhdo OV, Kamat PV, Schatz GC (2011) Virtual issue: graphene and functionalized grapheme. J Phys Chem C 115:3195–3197CrossRefGoogle Scholar
  21. 21.
    Zhang H, Lv XJ, Li YM, Wang Y, Li JH (2010) P25–graphene composite as a high performance photocatalyst. ACS Nano 4:380–386CrossRefGoogle Scholar
  22. 22.
    Liu J, Bai H, Wang Y, Liu Z, Zhang X, Sun DD (2010) Self-assembling TiO2 nanorods on large graphene oxide sheets at a two-phase interface and their anti-recombination in photocatalytic applications. Adv Funct Mater 20:4175–4181CrossRefGoogle Scholar
  23. 23.
    Wang X, Hu Z, Chen Y, Zhao G, Liu Y, Wen Z (2009) A novel approach towards high-performance composite photocatalyst of TiO2 deposited on activated carbon. Appl Surf Sci 255:3953–3958CrossRefGoogle Scholar
  24. 24.
    Andronic L, Enesca A, Cazan C, Visa M (2014) TiO2–active carbon composites for wastewater photocatalysis. J Sol-Gel Sci Technol 71:396–405CrossRefGoogle Scholar
  25. 25.
    Tryba B, Toyoda M, Morawski AW, Inagaki M (2005) Modification of carbon-coated TiO2 by iron to increase adsorptivity and photoactivity for phenol. Chemosphere 60:477–484CrossRefGoogle Scholar
  26. 26.
    Tryba B, Morawski AW, Inagaki M (2003) Application of TiO2-mounted activated carbon to the removal of phenol from water. Appl Catal B Environ 41:427–433CrossRefGoogle Scholar
  27. 27.
    Tsumura T, Kojitani N, Umemura H, Toyoda M, Inagaki M (2002) Composites between photoactive anatase-type TiO2 and adsorptive carbon. Appl Surf Sci 196:429–436CrossRefGoogle Scholar
  28. 28.
    Velasco LF, Parra JB, Ania CO (2010) Role of activated carbon features on the photocatalytic degradation of phenol. Appl Surf Sci 256:5254–5258CrossRefGoogle Scholar
  29. 29.
    Wang WD, Silva CG, Faria JL (2007) Photocatalytic degradation of chromotrope 2R using nanocrystalline TiO2/activated-carbon composite catalysts. Appl Catal B Environ 70:470–478CrossRefGoogle Scholar
  30. 30.
    Ao YH, Xu JJ, Fua DG, Shen XW, Yuan CW (2008) Low temperature preparation of anatase TiO2-coated activated carbon. Colloids Surf A Physicochem Eng Asp 312:125–130CrossRefGoogle Scholar
  31. 31.
    Stankovich S, Dikin DA, Piner RD, Kohlhaas KA, Kleinhammes A, Jia Y, Wu Y, Nguyenb ST, Ruoff RS (2007) Synthesis of graphene-based nanosheets via chemical reduction of exfoliated graphite oxide. Carbon 45:1558–1565CrossRefGoogle Scholar
  32. 32.
    Guo HL, Wang XF, Qian QY, Wang FB, Xia XH (2009) A green approach to the synthesis of graphene nanosheets. ACS Nano 3:2653–2659CrossRefGoogle Scholar
  33. 33.
    Luo G, Jiang X, Li M, Shen Q, Zhang L, Yu H (2013) Facile fabrication and enhanced photocatalytic performance of Ag/AgCl/rGO heterostructure photocatalyst. ACS Appl Mater Interfaces 5:2161–2168CrossRefGoogle Scholar
  34. 34.
    Shimodaira N, Masui A (2002) Raman spectroscopic investigations of activated carbon materials. J Appl Phys 92:902–909CrossRefGoogle Scholar
  35. 35.
    Zheng C, Zhou X, Cao H, Wang G, Liu ZJ (2014) Synthesis of porous graphene/activated carbon composite with high packing density and large specific surface area for supercapacitor electrode material. Power Sources 258:290–296CrossRefGoogle Scholar
  36. 36.
    Chen S, Hong J, Yang H, Yang J (2013) Adsorption of uranium (VI) from aqueous solution using a novel graphene oxide-activated carbon felt composite. J Environ Radioact 126:253–258CrossRefGoogle Scholar
  37. 37.
    Elmolla ES, Chaudhuri M (2010) Photocatalytic degradation of amoxicillin, ampicillin and cloxacillin antibiotics in aqueous solution using UV/TiO2 and UV/H2O2/TiO2 photocatalysis. Desalination 252:46–52CrossRefGoogle Scholar
  38. 38.
    Abellán MN, Bayarri B, Giménez J, Costa J (2007) Photocatalytic degradation of sulfamethoxazole in aqueous suspension of TiO2. Appl Catal B Environ 74:233–241CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.School of Chemistry and Materials ScienceJiangsu Normal UniversityXuzhouChina

Personalised recommendations