Skip to main content

Advertisement

Log in

Design and synthesis of H-TiO2/MnO2 core–shell nanotube arrays with high capacitance and cycling stability for supercapacitors

  • Energy materials
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Constructing hybrid electrodes with pseudocapacitive materials is an efficient strategy to realize high capacitance in supercapacitors for many high-energy applications ranging from portable electronics to consumer devices. However, as a typical pseudocapacitive electrode material, MnO2 usually suffers from poor electronic and ionic conductivities, which hinders the realization of their achievable pseudocapacitances. Comparing with conventional noble metals, cost-effective and robust hydrogenated TiO2 nanotube arrays are an excellent scaffold to support pseudocapacitive materials due to enhanced ion and electron delivery. Benefit from the structural and electronic advances, the well-designed H-TiO2/MnO2 NTAs supercapacitor exhibits specific capacitance as high as ~803 F g−1 at the scan rate of 5 mV s−1, reveals ~88% of the initial capacitance after 20000 cycles (only 0.0006% loss per cycle) and shows a high-rate capability. The well-performed designer could be a promising candidate for future power sources in a wide range of applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitors. Nat Mater 7:845–854

    Article  Google Scholar 

  2. Yu D, Goh K, Wang H, Wei L, Jiang W, Zhang Q, Dai L, Chen Y (2014) Scalable synthesis of hierarchically structured carbon nanotube-graphene fibres for capacitive energy storage. Nat Nanotechnol 9:555–562

    Article  Google Scholar 

  3. Augustyn V, Simonbc P, Dunn B (2014) Pseudocapacitive oxide materials for high-rate electrochemical energy storage. Energy Environ Sci 7:1597–1614

    Article  Google Scholar 

  4. Kumar N, Yu YC, Lu YH, Tseng TY (2016) Fabrication of carbon nanotube/cobalt oxide nanocomposites via electrophoretic deposition for supercapacitor electrodes. J Mater Sci 51:2320–2329. doi:10.1007/s10853-015-9540-9

    Article  Google Scholar 

  5. Behm N, Brokaw D, Overson C, Peloquin D, Poler JC (2013) High-throughput microwave synthesis and characterization of NiO nanoplates for supercapacitor devices. J Mater Sci 48:1711–1716. doi:10.1007/s10853-012-6929-6

    Article  Google Scholar 

  6. Wang L, Deng D, Salley SO, Ng KY (2015) Facile synthesis of 3-D composites of MnO2 nanorods and holey graphene oxide for supercapacitors. J Mater Sci 50:6313–6320. doi:10.1007/s10853-015-9169-8

    Article  Google Scholar 

  7. Balogun MS, Qiu W, Wang W, Fang P, Lu X, Tong Y (2015) Recent advances in metal nitrides as high-performance electrode materials for energy storage devices. J Mater Chem A 3:1364–1387

    Article  Google Scholar 

  8. Lu X, Yu M, Zhai T, Wang G, Xie S, Liu T, Liang C, Tong Y, Li Y (2013) High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. Nano Lett 13:2628–2633

    Article  Google Scholar 

  9. Balogun MS, Zeng Y, Qiu W, Luo Y, Onasanya A, Olaniyi T, Tong Y (2016) Three-dimensional nickel nitride (Ni3N) nanosheets: free standing and flexible electrode for lithium ion batteries and supercapacitors. J Mater Chem A 4:9844–9849

    Article  Google Scholar 

  10. Beidaghi M, Gogotsi Y (2014) Capacitive energy storage in micro-scale devices: recent advances in design and fabrication of microsupercapacitors. Energy Environ Sci 7:867–884

    Article  Google Scholar 

  11. Zhang LL, Zhao XS (2009) Carbon-based materials as supercapacitor electrodes. Chem Soc Rev 38:2520–2531

    Article  Google Scholar 

  12. Yan J, Wang Q, Wei T, Fan ZJ (2014) Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities. Adv Energy Mater 4:157–164

    Google Scholar 

  13. Wang G, Zhang L, Zhang J (2012) A review of electrode materials for electrochemical supercapacitors. Chem Soc Rev 41:797–828

    Article  Google Scholar 

  14. Kim SK, Koo HJ, Lee A, Braun PV (2014) Selective wetting-induced micro-electrode patterning for flexible micro-supercapacitors. Adv Mater 26:5108–5112

    Article  Google Scholar 

  15. Lu X, Yu M, Wang G, Zhai T, Xie S, Ling Y, Tong Y, Li Y (2013) H-TiO2@MnO2//H-TiO2@C core–shell nanowires for high performance and flexible asymmetric supercapacitors. Adv Mater 25:267–272

    Article  Google Scholar 

  16. Li S, Wen J, Mo X, Long H, Wang H, Wang J, Fang G (2014) Three-dimensional MnO2 nanowire/ZnO nanorod arrays hybrid nanostructure for high-performance and flexible supercapacitor electrode. J Power Sources 256:206–211

    Article  Google Scholar 

  17. Yu Z, Duong B, Abbitt D, Thomas J (2013) Highly ordered MnO2 nanopillars for enhanced supercapacitor performance. Adv Mater 25:3302–3306

    Article  Google Scholar 

  18. Ghodbane O, Pascal JL, Favier F (2009) Microstructural effects on charge-storage properties in MnO2-based electrochemical supercapacitors. ACS Appl Mater Interfaces 1:1130–1139

    Article  Google Scholar 

  19. Zhang H, Yu X, Braun PV (2011) Three-dimensional bicontinuous ultrafast-charge and -discharge bulk battery electrodes. Nat Nanotechnol 6:277–281

    Article  Google Scholar 

  20. Jiang J, Li Y, Liu J, Huang X, Yuan C, Lou XW (2012) Recent advances in metal oxide-based electrode architecture design for electrochemical energy storage. Adv Mater 24:5166–5180

    Article  Google Scholar 

  21. Shang C, Dong S, Wang S, Xiao D, Han P, Wang X, Gu L, Cui G (2013) Coaxial NixCo2x(OH)6x/TiN nanotube arrays as supercapacitor electrodes. ACS Nano 7:5430–5436

    Article  Google Scholar 

  22. Liu J, Guan C, Zhou C, Fan Z, Ke Q, Zhang G, Liu C, Wang J (2016) A flexible quasi-solid-state nickel-zinc battery with high energy and power densities based on 3D electrode design. Adv Mater 28:8732–8739

    Article  Google Scholar 

  23. Rodríguez-Moreno J, Navarrete-Astorga E, Dalchiele EA, Schrebler R, Ramos-Barradoa JR, Martín F (2014) Vertically aligned ZnO@CuS@PEDOT core@shell nanorod arrays decorated with MnO2 nanoparticles for a high-performance and semi-transparent supercapacitor electrode. Chem Commun 50:5652–5655

    Article  Google Scholar 

  24. Peng X, Huo K, Fu J, Zhang X, Gao B, Chu PK (2013) Coaxial PANI/TiN/PANI nanotube arrays for high-performance supercapacitor electrodes. Chem Commun 49:10172–10174

    Article  Google Scholar 

  25. Li R, Wang Y, Zhou C, Wang C, Ba X, Li Y, Huang X, Liu J (2015) Carbon-stabilized high-capacity ferroferric oxide nanorod array for flexible solid-state alkaline battery-supercapacitor hybrid device with high environmental suitability. Adv Funct Mater 25:5384–5394

    Article  Google Scholar 

  26. Balogun MS, Li C, Zeng Y, Yu M, Wu Q, Wu M, Lu X, Tong Y (2014) Titanium dioxide@titanium nitride nanowires on carbon cloth with remarkable rate capability for flexible lithium-ion batteries. J Power Sources 272:946–953

    Article  Google Scholar 

  27. Balogun MS, Qiu W, Luo Y, Huang Y, Yang H, Li M, Yu M, Liang C, Fang P, Liu P, Tong Y (2015) Improving the lithium-storage properties of self-grown nickel oxide: a back-up from TiO2 nanoparticles. ChemElectroChem 2:1243–1248

    Article  Google Scholar 

  28. Balogun MS, Zhu Y, Qiu W, Luo Y, Huang Y, Liang C, Lu X, Tong Y (2015) Chemically lithiated TiO2 heterostructured nanosheet anode with excellent rate capability and long cycle-life for high-performance lithium-ion batteries. ACS Appl Mater Interfaces 7:25991–26003

    Article  Google Scholar 

  29. Huang YG, Zhang XH, Chen XB, Wang HQ, Chen JR, Zhong XX, Li QY (2015) Electrochemical properties of MnO2-deposited TiO2 nanotube arrays 3D composite electrode for supercapacitors. Int J Hydrogen Energy 40:14331–14337

    Article  Google Scholar 

  30. Wang C, Wu L, Wang H, Zuo W, Li Y, Liu J (2015) Fabrication and shell optimization of synergistic TiO2-MoO3 core–shell nanowire array anode for high energy and power density lithium-ion batteries. Adv Funct Mater 25:3524–3533

    Article  Google Scholar 

  31. Lu X, Wang G, Zhai T, Yu M, Gan J, Tong Y, Li Y (2012) Hydrogenated TiO2 nanotube arrays for supercapacitors. Nano Lett 12:1690–1696

    Article  Google Scholar 

  32. Qin Y, Zhang J, Wang Y, Shu X, Yu C, Cui J, Zheng H, Zhang Y, Wu Y (2016) Supercapacitive performance of electrochemically doped TiO2 nanotube arrays decorated with Cu2O nanoparticles. RSC Adv 6:47669–47675

    Article  Google Scholar 

  33. Zhou H, Zhang Y (2014) Electrochemically self-doped TiO2 nanotube arrays for supercapacitors. J Phys Chem C 118:5626–5636

    Article  Google Scholar 

  34. Yang S, Lin Y, Song X, Zhang P, Gao L (2015) Covalently coupled ultrafine H-TiO2 nanocrystals/nitrogen-doped graphene hybrid materials for high-performance supercapacitor. ACS Appl Mater Interfaces 7:17884–17892

    Article  Google Scholar 

  35. Nakayama M, Kanaya T, Inoue R (2007) Anodic deposition of layered manganese oxide into a colloidal crystal template for electrochemical supercapacitor. Electrochem Commun 9:1154–1158

    Article  Google Scholar 

  36. Ng J, Xu S, Zhang X, Yang HY, Sun DD (2010) Hybridized nanowires and cubes: a novel architecture of a heterojunctioned TiO2/SrTiO3 thin film for efficient water splitting. Adv Funct Mater 20:4287–4294

    Article  Google Scholar 

  37. Hwang H, Yun J, Jang J (2014) Multi-shell porous TiO2 hollow nanoparticles for enhanced light harvesting in dye-sensitized solar cells. Adv Funct Mater 24:7619–7626

    Article  Google Scholar 

  38. Chen J, Song W, Hou H, Zhang Y, Jing M, Jia X, Ji X (2015) Ti3+ self-doped dark rutile TiO2 ultrafine nanorods with durable high-rate capability for lithium-ion batteries. Adv Funct Mater 25:6793–6801

    Article  Google Scholar 

  39. Yue W, Randorn C, Attidekou PS, Su Z, Irvine JTS, Zhou W (2009) Syntheses, Li insertion, and photoactivity of mesoporous crystalline TiO2. Adv Funct Mater 19:2826–2833

    Article  Google Scholar 

  40. Ge J, Yao HB, Hu W, Yu XF, Yan YX, Mao LB, Li HH, Li SS, Yu SH (2013) Facile dip coating processed graphene/MnO2 nanostructured sponges as high performance supercapacitor electrodes. Nano Energy 2:505–513

    Article  Google Scholar 

  41. Zhang J, Li M, Feng Z, Chen J, Li C (2006) UV Raman spectroscopic study on TiO2. I. Phase transformation at the surface and in the bulk. J Phys Chem B 110:927–935

    Article  Google Scholar 

  42. Pottier A, Cassaignon S, Chanéac C, Villain F, Tronc E, Jolivet J (2003) Size tailoring of TiO2 anatase nanoparticles in aqueous medium and synthesis of nanocomposites. J Mater Chem 13:877–882

    Article  Google Scholar 

  43. Baddour-Hadjean R, Pereira-Ramos JP (2010) Raman microspectrometry applied to the study of electrode materials for lithium batteries. Chem Rev 110:1278–1319

    Article  Google Scholar 

  44. Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides—part 1. Periodic structures. Spectrochim Acta Part A 60:689–700

    Article  Google Scholar 

  45. Wang F, Li H, Wu Q, Fang J, Huang Y, Yin C, Xu Y, Luo Z (2016) Improving the performance of a non-aqueous lithium-air battery by defective titanium dioxides with oxygen vacancies. Electrochim Acta 202:1–7

    Article  Google Scholar 

  46. He Y, Du S, Li H, Cheng Q, Pavlinek V, Saha P (2016) MnO2/polyaniline hybrid nanostructures on carbon cloth for supercapacitor electrodes. J Solid State Electrochem 20:1459–1467

    Article  Google Scholar 

  47. Chou S, Cheng F, Chen J (2006) Electrodeposition synthesis and electrochemical properties of nanostructured γ-MnO2 films. J Power Sources 162:727–734

    Article  Google Scholar 

  48. Gamby J, Taberna PL, Simon P, Fauvarque JF, Chesneau M (2001) Studies and characterisations of various activated carbons used for carbon/carbon supercapacitors. J Power Sources 101:109–116

    Article  Google Scholar 

  49. Niu Z, Zhou W, Chen J, Feng G, Li H, Ma W, Li J, Dong H, Ren Y, Zhao D, Xie S (2011) Compact-designed supercapacitors using free-standing single-walled carbon nanotube films. Energy Environ Sci 4:1440–1446

    Article  Google Scholar 

  50. Wang JG, Yang Y, Huang ZH, Kang F (2012) Rational synthesis of MnO2/conducting polypyrrole@carbon nanofiber triaxial nano-cables for high-performance supercapacitors. J Mater Chem 22:16943–16949

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (No. 51403075).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shanshan Xiao or Guangqing Gai.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xiao, S., Bi, F., Zhao, L. et al. Design and synthesis of H-TiO2/MnO2 core–shell nanotube arrays with high capacitance and cycling stability for supercapacitors. J Mater Sci 52, 7744–7753 (2017). https://doi.org/10.1007/s10853-017-1034-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-1034-5

Keywords

Navigation