Journal of Materials Science

, Volume 52, Issue 13, pp 8200–8206 | Cite as

Divalent nickel-doped cubic magnesium oxide for spin qubit application

Original Paper

Abstract

We reported optical, defect levels and spin coherence properties of NiMg center in MgO, which consists of a substitutional nickel atom in a magnesium site. Our study is based on the first-principles calculation and experimental analysis. The neutral of NiMg center is stable in the p-type MgO. The defect center possesses a triplet ground state and is optically accessible. According to a mean-field-based scheme, the spin coherence time of neutral NiMg center is estimated to be 0.33 s at T = 0 K. Moreover, it is confirmed that ion implantation at room temperature can be an efficient way to produce the neutral NiMg centers in MgO.

References

  1. 1.
    Uenaka Y, Uchino T (2011) Photoexcitation, trapping, and recombination processes of the F-type centers in lasing MgO microcrystals. Phys Rev B 83:195108. doi:10.1103/Physrevb.83.195108 CrossRefGoogle Scholar
  2. 2.
    Monge MA, Popov AI, Ballesteros C, Gonzalez R, Chen Y, Kotomin EA (2000) Formation of anion-vacancy clusters and nanocavities in thermochemically reduced MgO single crystals. Phys Rev B 62:9299–9304. doi:10.1103/PhysRevB.62.9299 CrossRefGoogle Scholar
  3. 3.
    Martinez-Boubeta C, Beltran JI, Balcells L, Konstantinovic Z, Valencia S, Schmitz D, Arbiol J, Estrade S, Cornil J, Martinez B (2010) Ferromagnetism in transparent thin films of MgO. Phys Rev B 82:024405. doi:10.1103/Physrevb.82.024405 CrossRefGoogle Scholar
  4. 4.
    Matulevich YT, Vink TJ, van Emmichoven PAZ (2002) Low-energy ion-induced electron emission from a MgO(100) thin film: the role of the MgO-substrate interface. Phys Rev Lett 89:167601. doi:10.1103/Physrevlett.89.167601 CrossRefGoogle Scholar
  5. 5.
    Okada T, Naoi T, Yoshioka T (2009) Decay kinetics of luminescence and electron emission from MgO crystal powders in ac plasma display panels. J Appl Phys 105:113304. doi:10.1063/1.3140605 CrossRefGoogle Scholar
  6. 6.
    Summers GP, Wilson TM, Jeffries BT, Tohver HT, Chen Y, Abraham MM (1983) Luminescence from oxygen vacancies in Mgo crystals thermochemically reduced at high-temperatures. Phys Rev B 27:1283–1291. doi:10.1103/PhysRevB.27.1283 CrossRefGoogle Scholar
  7. 7.
    Chen Y, Williams RT, Sibley WA (1969) Defect cluster centers in MgO. Phys Rev 182:960. doi:10.1103/PhysRev.182.960 CrossRefGoogle Scholar
  8. 8.
    Bird BD, Osborne GA, Stephens PJ (1972) Magnetic circular dichroism of impurities in solids: vibrationally induced d → d transitions in MgO:Ni. Phys Rev B 5:1800. doi:10.1103/PhysRevB.5.1800 CrossRefGoogle Scholar
  9. 9.
    Narayan J, Nori S, Pandya DK, Avasthi DK, Smirnov AI (2008) Defect dependent ferromagnetism in MgO doped with Ni and Co. Appl Phys Lett 93:082507. doi:10.1063/1.2977614 CrossRefGoogle Scholar
  10. 10.
    Haupricht T, Sutarto R, Haverkort MW, Ott H, Tanaka A, Hsieh HH, Lin HJ, Chen CT, Hu Z, Tjeng LH (2010) Local electronic structure of Fe2+ impurities in MgO thin films: temperature-dependent soft X-ray absorption spectroscopy study. Phys Rev B. doi:10.1103/Physrevb.82.035120 Google Scholar
  11. 11.
    Tonucci RJ, Jacobsen SM, Yen WM (1991) Energy-transfer processes in the 1 T 2g and 3 T 2g excited states of Ni2+: MgO. Phys Rev B 43:7377–7385. doi:10.1103/PhysRevB.43.7377 CrossRefGoogle Scholar
  12. 12.
    Low W (1958) Paramagnetic and optical spectra of divalent nickel in cubic crystalline fields. Phys Rev 109:247–255. doi:10.1103/PhysRev.109.247 CrossRefGoogle Scholar
  13. 13.
    Dutt MVG, Childress L, Jiang L, Togan E, Maze J, Jelezko F, Zibrov AS, Hemmer PR, Lukin MD (2007) Quantum register based on individual electronic and nuclear spin qubits in diamond. Science 316:1312–1316. doi:10.1126/science.1139831 CrossRefGoogle Scholar
  14. 14.
    Grotz B, Hauf MV, Dankerl M, Naydenov B, Pezzagna S, Meijer J, Jelezko F, Wrachtrup J, Stutzmann M, Reinhard F, Garrido JA (2012) Charge state manipulation of qubits in diamond. Nat Commun 3:11118. doi:10.1038/Ncomms1729 CrossRefGoogle Scholar
  15. 15.
    Kim M, Mamin HJ, Sherwood MH, Ohno K, Awschalom DD, Rugar D (2015) Decoherence of near-surface nitrogen-vacancy centers due to electric field noise. Phys Rev Lett 115:087602. doi:10.1103/Physrevlett.115.087602 CrossRefGoogle Scholar
  16. 16.
    MacQuarrie ER, Gosavi TA, Jungwirth NR, Bhave SA, Fuchs GD (2013) Mechanical spin control of nitrogen-vacancy centers in diamond. Phys Rev Lett 111:227602. doi:10.1103/Physrevlett.111.227602 CrossRefGoogle Scholar
  17. 17.
    Togan E, Chu Y, Trifonov AS, Jiang L, Maze J, Childress L, Dutt MVG, Sorensen AS, Hemmer PR, Zibrov AS, Lukin MD (2010) Quantum entanglement between an optical photon and a solid-state spin qubit. Nature 466:730–735. doi:10.1038/nature09256 CrossRefGoogle Scholar
  18. 18.
    Neumann P, Kolesov R, Naydenov B, Beck J, Rempp F, Steiner M, Jacques V, Balasubramanian G, Markham ML, Twitchen DJ, Pezzagna S, Meijer J, Twamley J, Jelezko F, Wrachtrup J (2010) Quantum register based on coupled electron spins in a room-temperature solid. Nat Phys 6:249–253. doi:10.1038/Nphys1536 CrossRefGoogle Scholar
  19. 19.
    Weber JR, Koehl WF, Varley JB, Janotti A, Buckley BB, Van de Walle CG, Awschalom DD (2010) Quantum computing with defects. Proc Natl Acad Sci USA 107:8513–8518. doi:10.1073/pnas.1003052107 CrossRefGoogle Scholar
  20. 20.
    Gordon L, Janotti A, Van de Walle CG (2015) Defects as qubits in 3C– and 4H–SiC. Phys Rev B 92:045208. doi:10.1103/Physrevb.92.045208 CrossRefGoogle Scholar
  21. 21.
    Falk AL, Buckley BB, Calusine G, Koehl WF, Dobrovitski VV, Politi A, Zorman CA, Feng PXL, Awschalom DD (2013) Polytype control of spin qubits in silicon carbide. Nat Commun 4:1819. doi:10.1038/Ncomms2854 CrossRefGoogle Scholar
  22. 22.
    Wang XP, Zhao MW, Wang ZH, He XJ, Xi Y, Yan SS (2012) Spin-polarization of VGaON center in GaN and its application in spin qubit. Appl Phys Lett 100:192401. doi:10.1063/1.4712595 CrossRefGoogle Scholar
  23. 23.
    Tu Y, Tang Z, Zhao XG, Chen Y, Zhu ZQ, Chu JH, Fang JC (2013) A paramagnetic neutral VAlON center in wurtzite AlN for spin qubit application. Appl Phys Lett 103:072103. doi:10.1063/1.4818659 CrossRefGoogle Scholar
  24. 24.
    Abtew TA, Gao WW, Gao X, Sun YY, Zhang SB, Zhang PH (2014) Theory of oxygen–boron vacancy defect in cubic boron nitride: a diamond NV- isoelectronic center. Phys Rev Lett 113:136401. doi:10.1103/Physrevlett.113.136401 CrossRefGoogle Scholar
  25. 25.
    Yu XG, Marks TJ, Facchetti A (2016) Metal oxides for optoelectronic applications. Nat Mater 15:383–396. doi:10.1038/NMAT4599 CrossRefGoogle Scholar
  26. 26.
    Chandra HK, Mahadevan P (2014) Boron diffusion in MgO and emergence of magnetic ground states: a first-principles study. Phys Rev B 89:144412. doi:10.1103/Physrevb.89.144412 CrossRefGoogle Scholar
  27. 27.
    Ozaki T (2003) Variationally optimized atomic orbitals for large-scale electronic structures. Phys Rev B 67:155108. doi:10.1103/Physrevb.67.155108 CrossRefGoogle Scholar
  28. 28.
    Ozaki T, Kino H (2005) Efficient projector expansion for the ab initio LCAO method. Phys Rev B 72:045121. doi:10.1109/Physrevb.72.045121 CrossRefGoogle Scholar
  29. 29.
    Troullier N, Martins JL (1991) Efficient pseudopotentials for plane-wave calculations. Phys Rev B 43:1993–2006. doi:10.1103/PhysRevB.43.1993 CrossRefGoogle Scholar
  30. 30.
    Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868. doi:10.1103/PhysRevLett.77.3865 CrossRefGoogle Scholar
  31. 31.
    Van de Walle CG, Neugebauer J (2004) First-principles calculations for defects and impurities: applications to III-nitrides. J Appl Phys 95:3851–3879. doi:10.1063/1.1682673 CrossRefGoogle Scholar
  32. 32.
    Freysoldt C, Grabowski B, Hickel T, Neugebauer J, Kresse G, Janotti A, Van de Walle CG (2014) First-principles calculations for point defects in solids. Rev Mod Phys 86:253–305. doi:10.1103/RevModPhys.86.253 CrossRefGoogle Scholar
  33. 33.
    Gali A, Janzen E, Deak P, Kresse G, Kaxiras E (2009) Theory of spin-conserving excitation of the NV- center in diamond. Phys Rev Lett 103:186404. doi:10.1103/Physrevlett.103.186404 CrossRefGoogle Scholar
  34. 34.
    Payne SA (1990) Energy-level assignments for the 1 E and 3 T 1a states of MgO:Ni2+. Phys Rev B 41:6109–6116. doi:10.1103/PhysRevB.41.6109 CrossRefGoogle Scholar
  35. 35.
    Balasubramanian G, Neumann P, Twitchen D, Markham M, Kolesov R, Mizuochi N, Isoya J, Achard J, Beck J, Tissler J, Jacques V, Hemmer PR, Jelezko F, Wrachtrup J (2009) Ultralong spin coherence time in isotopically engineered diamond. Nat Mater 8:383–387. doi:10.1038/NMAT2420 CrossRefGoogle Scholar
  36. 36.
    Stanwix PL, Pham LM, Maze JR, Le Sage D, Yeung TK, Cappellaro P, Hemmer PR, Yacoby A, Lukin MD, Walsworth RL (2010) Coherence of nitrogen-vacancy electronic spin ensembles in diamond. Phys Rev B 82:201201. doi:10.1103/PhysRevB.82.201201 CrossRefGoogle Scholar
  37. 37.
    Yang WL, Yin ZQ, Xu ZY, Feng M, Du JF (2010) One-step implementation of multiqubit conditional phase gating with nitrogen-vacancy centers coupled to a high-Q silica microsphere cavity. Appl Phys Lett 96:241113. doi:10.1063/1.3455891 CrossRefGoogle Scholar
  38. 38.
    Maurer PC, Kucsko G, Latta C, Jiang L, Yao NY, Bennett SD, Pastawski F, Hunger D, Chisholm N, Markham M, Twitchen DJ, Cirac JI, Lukin MD (2012) Room-temperature quantum bit memory exceeding one second. Science 336:1283–1286. doi:10.1126/science.1220513 CrossRefGoogle Scholar
  39. 39.
    Zhang YG, Tang Z, Zhao XG, Cheng GD, Tu Y, Cong WT, Peng W, Zhu ZQ, Chu JH (2014) A neutral oxygen-vacancy center in diamond: a plausible qubit candidate and its spintronic and electronic properties. Appl Phys Lett 105:052107. doi:10.1063/1.4892654 CrossRefGoogle Scholar
  40. 40.
    Schoenbe A, Suss JT, Luz Z, Low W (1974) Dynamic Jahn–Teller effect in EPR spectrum of Ni1+ and Ni3+ in magnesium oxide. Phys Rev B 9:2047–2050. doi:10.1103/PhysRevB.9.2047 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Key Laboratory of Polar Materials and Devices, Ministry of Education of ChinaEast China Normal UniversityShanghaiPeople’s Republic of China
  2. 2.Shanghai Institute of Applied PhysicsChinese Academy of SciencesShanghaiChina

Personalised recommendations