Skip to main content

Structural, thermal and dissolution properties of MgO- and CaO-containing borophosphate glasses: effect of Fe2O3 addition

Abstract

This paper investigated manufacture of high-durability phosphate glass fibres for biomedical applications. Five different borophosphate glass formulations in the systems of 45P2O5–5B2O3–5Na2O–(29 − x)CaO–16MgO–(x)Fe2O3 and 45P2O5–5B2O3–5Na2O–24CaO–(21 − x)MgO–(x)Fe2O3 where x = 5, 8 and 11 mol% were produced via melt quenching. The compositions and amorphous nature of the glasses were confirmed by ICP-MS and XRD, respectively. FTIR results indicated depolymerisation of the phosphate chains with a decrease in Q 2 units with increasing Fe2O3 content. DSC analyses showed an increase in T g by ~5 °C with an increment of 3 mol% in Fe2O3 content. The thermal properties were also used to calculate processing window (i.e. T c,onsT g) and another parameter, K gl, to determine the suitability for fibre drawing directly from melt, which equals (T c,onsT g)/(T lT c,ons). The degradation study conducted in PBS solution at 37 °C showed a decrease of 25–47% in degradation rate with increasing Fe2O3 content. This confirmed that the chemical durability of the glasses had increased, which was suggested to be due to Fe2O3 addition. Furthermore, the density measured via Archimedes method revealed a linear increase with increasing Fe2O3 content.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

References

  1. Parsons AJ, Ahmed I, Haque P, Fitzpatrick B, Niazi MIK, Walker GS et al (2009) Phosphate glass fibre composites for bone repair. J Bionic Eng 6:318–323

    Article  Google Scholar 

  2. Ahmed I, Lewis M, Olsen I, Knowles JC (2004) Phosphate glasses for tissue engineering: part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25:491–499

    Article  Google Scholar 

  3. Ahmed I, Jones IA, Parsons AJ, Bernard J, Farmer J, Scotchford CA et al (2011) Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture. J Mater Sci Mater M 22:1825–1834. doi:10.1007/s10856-011-4361-0

    Article  Google Scholar 

  4. Sharmin N, Parsons AJ, Rudd CD, Ahmed I (2014) Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5. J Biomater Appl 29:639–653

    Article  Google Scholar 

  5. Brauer DS (2012) Phosphate glasses. In: Jones JR, Clare AG (eds) Bio-glasses: an introduction. Wiley, New Jersey

    Google Scholar 

  6. Ahmed I, Lewis M, Olsen I, Knowles JC (2004) Phosphate glasses for tissue engineering: part 2. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass fibre system. Biomaterials 25:501–507

    Article  Google Scholar 

  7. Sharmin N, Rudd CD, Parsons AJ, Ahmed I (2016) Structure, viscosity and fibre drawing properties of phosphate-based glasses: effect of boron and iron oxide addition. J Mater Sci 51:7523–7535. doi:10.1007/s10853-016-0032-3

    Article  Google Scholar 

  8. Ouis MA, Abdelghany AM, ElBatal HA (2012) Corrosion mechanism and bioactivity of borate glasses analogue to Hench’s bioglass. Process Appl Ceram 6:141–149

    Article  Google Scholar 

  9. Fu H, Fu Q, Zhou N, Huang W, Rahaman MN, Wang D et al (2009) In vitro evaluation of borate-based bioactive glass scaffolds prepared by a polymer foam replication method. Mater Sci Eng C 29:2275–2281

    Article  Google Scholar 

  10. Albon C, Muresan D, Vandenberghe RE, Simon S (2008) Iron environment in calcium-soda-phosphate glasses and vitroceramics. J Non Cryst Solids 354:4603–4608

    Article  Google Scholar 

  11. Elisa M, Iordanescu R, Sava BA, Aldica G, Kuncser V, Valsangiacom C et al (2010) Optical and structural investigations on iron-containing phosphate glasses. J Mater Sci 46:1563–1570. doi:10.1007/s10853-010-4963-9

    Article  Google Scholar 

  12. Sales BC, Boatner LA (1986) Physical and chemical characteristics of lead-iron phosphate nuclear waste glasses. J Non Cryst Solids 79:83–116

    Article  Google Scholar 

  13. Yu X, Day DE, Long GJ, Brow RK (1997) Properties and structure of sodium-iron phosphate glasses. J Non Cryst Solids 215:21–31

    Article  Google Scholar 

  14. Stefan R, Karabulut M (2014) Structural properties of iron containing calcium-magnesium borophosphate glasses. J Mol Struct 1071:45–51

    Article  Google Scholar 

  15. Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25:3223–3232

    Article  Google Scholar 

  16. Bingham PA, Hand RJ, Forder SD, Lavaysierre A (2005) Vitrified metal finishing wastes II. Thermal and structural characterisation. J Hazard Mater 122:129–138

    Article  Google Scholar 

  17. Ahmed I, Parsons A, Jones A, Walker G, Scotchford C, Rudd C (2010) Cytocompatibility and effect of increasing MgO content in a range of quaternary invert phosphate-based glasses. J Biomater Appl 24:555–575

    Article  Google Scholar 

  18. Franks K, Salih V, Knowles JC, Olsen I (2002) The effect of MgO on the solubility behavior and cell proliferation in a quaternary soluble phosphate based glass system. J Mater Sci Mater M 13:549–556

    Article  Google Scholar 

  19. Parsons AJ, Ahmed I, Rudd CD, Cuello GJ, Pellegrini E, Richard D et al (2010) Neutron scattering and ab initio molecular dynamics study of cross-linking in biomedical phosphate glasses. J Phys Condens Matter 22:485403

    Article  Google Scholar 

  20. Walter G, Vogel J, Hoppea U, Hartmannc P (2001) The structure of CaO–Na2O–MgO–P2O5 invert glass. J Non Cryst Solids 296:212–223

    Article  Google Scholar 

  21. Kordes E, Vogel W, Feterowsky R (1953) Physikalisch-chemische Untersuchungen über die Eigenschaften und den Feinbau von Phosphatgläsern. Z für Elektrochem Ber der Bunsenges für Phys Chem 57:282–289

    Google Scholar 

  22. Sahar MR, Kamaruddin N (1996) The phase equilibrium of binary MgO- and CaO-phosphate glasses. J Mater Sci Lett 15:1932–1934

    Article  Google Scholar 

  23. Walter G, Hoppe U, Kranold R, Stachel D (1994) Structural characterisation of magnesium phosphate glasses by X-ray diffraction. Phys Chem Glasses B 35:245–252

    Google Scholar 

  24. Shaharuddin SIS, Ahmed I, Furniss D, Parsons AJ, Rudd CD (2012) Thermal properties, viscosities and densities of (50 − x)Na2O–(x)CaO–50P2O5 glasses. Glass Technol Part A 53:245–251

    Google Scholar 

  25. Mazurin OV (2007) Problems of compatibility of the values of glass transition temperatures published in the world literature. Glass Phys Chem 33:22–36

    Article  Google Scholar 

  26. Sharmin N, Hasan MS, Parsons AJ, Furniss D, Scotchford CA, Ahmed I et al (2013) Effect of boron addition on the thermal, degradation, and cytocompatibility properties of phosphate-based glasses. Biomed Res Int 2013:902427

    Article  Google Scholar 

  27. Seddon AB, Tikhomirov VK, Rowe H, Furniss D (2007) Temperature dependence of viscosity of Er3+-doped oxyfluoride glasses and nano-glass-ceramics. J Mater Sci Mater El 18:145–151

    Article  Google Scholar 

  28. Shelby JE (2005) Principles of glass formation. In: Shelby JE (ed) Introduction to glass science and technology, 2nd edn. The Royal Society of Chemistry, Cambridge, pp 7–25

    Chapter  Google Scholar 

  29. Inoue A (1998) Amorphous, nanoquasicrystalline and nanocrystalline alloys in Al-based systems. Prog Mater Sci 43:365–520

    Article  Google Scholar 

  30. Nascimento MLF, Souza LA, Ferreira EB, Zanotto ED (2005) Can glass stability parameters infer glass forming ability? J Non Cryst Solids 351:3296–3308

    Article  Google Scholar 

  31. Hruby A (1972) Evaluation of glass-forming tendency by means of DTA. Czech J Phys B 22:1187–1193

    Article  Google Scholar 

  32. Arstila H, Vedel E, Hupa L, Hupa M (2007) Factors affecting crystallization of bioactive glasses. J Eur Ceram Soc 27:1543–1546

    Article  Google Scholar 

  33. Salman SM, Salama SN, Mahdy EA (2015) The effect of strontium oxide replacing calcium oxide on the crystallization and thermal expansion properties of Li2O–CaO–SiO2 glasses. Ceram Int 41:137–143

    Article  Google Scholar 

  34. Bergo P, Reis ST, Pontuschka WM, Prison JM, Motta CC (2004) Dielectric properties and structural features of barium-iron phosphate glasses. J Non Cryst Solids 336:159–164

    Article  Google Scholar 

  35. Haque P, Ahmed I, Parsons A, Felfel R, Walker G, Rudd C (2013) Degradation properties and microstructural analysis of 40P2O5–24 MgO–16CaO–16Na2O–4Fe2O3 phosphate glass fibres. J Non Cryst Solids 375:99–109

    Article  Google Scholar 

  36. Muresan D, Bathory D, Keul M, Balasz I, Simon S (2005) Local structure and biological effects of vitreous calcium–sodium–phosphate system containing iron. J Optoelectron Adv M 7:2835–2838

    Google Scholar 

  37. Lu M, Wang F, Liao Q, Chen K, Qin J, Pan S (2015) FTIR spectra and thermal properties of TiO2-doped iron phosphate glasses. J Mol Struct 1081:187–192

    Article  Google Scholar 

  38. Qian B, Yang S, Liang X, Lai Y, Gao L, Yin G (2012) Structural and thermal properties of La2O3–Fe2O3–P2O5 glasses. J Mol Struct 1011:153–157

    Article  Google Scholar 

  39. Magdas DA, Cozar O, Chis V, Ardelean I, Vedeanu N (2008) The structural dual role of Fe2O3 in some lead-phosphate glasses. Vib Spectrosc 48:251–254

    Article  Google Scholar 

  40. Bruni S, Cariati F, Narducci D (1994) Infrared specular reflection spectra of copper–zinc phosphate glasses. Vib Spectrosc 7:169–173

    Article  Google Scholar 

  41. Sharmin N, Hasan MS, Rudd CD, Boyd D, Werner-Zwanziger U, Ahmed I et al (2016) Effect of boron oxide addition on the viscosity-temperature behaviour and structure of phosphate-based glasses. J Biomed Mater Res B

  42. Ciceo-Lucacel R, Radu T, Ponta O, Simon V (2014) Novel selenium containing boro-phosphate glasses: preparation and structural study. Mater Sci Eng C 39:61–66

    Article  Google Scholar 

  43. Wazer V, John R (1958) Phosphorus and its compounds. Interscience Publishers, New York

    Google Scholar 

  44. Knowles JC (2003) Phosphate based glasses for biomedical applications. J Mater Chem 13:2395

    Article  Google Scholar 

  45. Koudelka L, Mošner P (2001) Study of the structure and properties of Pb–Zn borophosphate glasses. J Non Cryst Solids 293–295:635–641

    Article  Google Scholar 

  46. Carta D, Pickup DM, Knowles JC, Ahmed I, Smith ME, Newport RJ (2007) A structural study of sol–gel and melt-quenched phosphate-based glasses. J Non Cryst Solids 353:1759–1765

    Article  Google Scholar 

  47. Kim N-J, Im S-H, Kim D-H, Yoon D-K, Ryu B-K (2010) Structure and properties of borophosphate glasses. Electron Mater Lett 6:103–106

    Article  Google Scholar 

  48. Elisa M, Sava BA, Diaconu A, Boroica L, Ursu D, Stamatin I et al (2010) Thermal properties of ecological phosphate and silicate glasses. Glass Phys Chem+ 35:596–601

    Article  Google Scholar 

  49. Okura T, Miyachi T, Monma H (2006) Properties and vibrational spectra of magnesium phosphate glasses for nuclear waste immobilization. J Eur Ceram Soc 26:831–836

    Article  Google Scholar 

  50. Singh DN (2009) Periodic table and periodicity of properties. In: Singh DN (ed) Basic concept of inorganic chemistry. Pearson Education, India, pp 1–32

    Google Scholar 

  51. Massera J, Claireaux C, Lehtonen T, Tuominen J, Hupa L, Hupa M (2011) Control of the thermal properties of slow bioresorbable glasses by boron addition. J Non Cryst Solids 357:3623–3630

    Article  Google Scholar 

  52. Shih PY, Yung SW, Chin TS (1998) Thermal and corrosion behavior of P2O5–Na2O–CuO glasses. J Non Cryst Solids 224:143–152

    Article  Google Scholar 

  53. Shih PY, Chin TS (2001) Preparation of lead-free phosphate glasses with low T g and excellent chemical durability. J Mater Sci Lett 20:1811–1813

    Article  Google Scholar 

  54. Isozaki K, Hosono H, Kokumai H, Kawazoe H, Kanazawa T, Gohshi Y (1981) Co-ordination of Mg2+ in MgO–P2O5 glasses. J Mater Sci 16:2318–2319

    Article  Google Scholar 

  55. McMillan PW (1979) Glass-ceramics. Academic Press, London

    Google Scholar 

  56. Chanshetti UB, Shelke VA, Jadhav SM, Shankarwar SG, Chondhekar TK, Shankarwar AG et al (2011) Density and molar volume studies of phosphate glasses. Facta Univ Ser Phys Chem Technol 9:29–36

    Article  Google Scholar 

  57. Hasan MS, Ahmed I, Parsons AJ, Walker GS, Scotchford CA (2012) Material characterisation and cytocompatibility assessment of quinternary phosphate glasses. J Mater Sci Mater M 23:2531–2541

    Article  Google Scholar 

Download references

Acknowledgements

This work was carried out at the International Doctoral Innovation Centre (IDIC). The authors acknowledge the financial support from Ningbo Education Bureau, Ningbo Science and Technology Bureau, China’s MoST and the University of Nottingham. The work is also partially supported by EPSRC (Grant No. EP/L016362/1).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoling Liu.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Tan, C., Ahmed, I., Parsons, A.J. et al. Structural, thermal and dissolution properties of MgO- and CaO-containing borophosphate glasses: effect of Fe2O3 addition. J Mater Sci 52, 7489–7502 (2017). https://doi.org/10.1007/s10853-017-0981-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0981-1

Keywords

  • Fe2O3
  • Fe2O3 Content
  • Chemical Durability
  • Phosphate Buffer Saline Solution
  • Glass Stability