Skip to main content
Log in

Preparation and infrared response properties of vanadium dioxide nanowire/carbon nanotube composite film

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A new composite thin film of vanadium dioxide (VO2) nanowire/carbon nanotube (CNT) has been prepared by a hydrothermal method. The VO2 nanowires were covered on the whole upper surfaces of CNT and combined very well with the CNT film. XRD and Raman spectra revealed that the as-synthesized composite film had good crystallization. The film presented favorable photoelectric response at the room temperature due to the excellent thermal conductivity of CNT film and their large effective illumination area. The obtained results revealed that photocurrent showed a strong dependence on the bias voltage and incident infrared light intensity. Furthermore, the infrared photoelectric response exhibited an obvious enhancement with decreasing the thickness of the VO2 films. The responsivity (R λ ) can reach up to 17.83 mA/W for the film thickness of 25 μm, and the rise and decay time are about 0.84 and 0.56 s, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Svensson J, Anttu N, Vainorius N, Borg BM, Wernersson LE (2013) Diameter-dependent photocurrent in InAsSb nanowire infrared photodetectors. Nano Lett 13:1380–1385

    Article  Google Scholar 

  2. Rogalski A (2002) Infrared detectors: an overview. Infrared Phys Technol 43:187–210

    Article  Google Scholar 

  3. Waynant RW, Ilev IK, Gannot I (2001) Mid-infrared laser applications in medicine and biology. Philos Trans R Soc A 359:635–644

    Article  Google Scholar 

  4. Zhao HX, Chen XS, Lu JP, Shu HB, Lu W (2014) The structural and electronic properties of amorphous HgCdTe from first-principles calculations. J Phys D Appl Phys 47:025304

    Article  Google Scholar 

  5. Putley EH (1982) History of infrared detection-part I. the 1st detectors of thermal-radiation. Infrared Phys 22:125–131

    Article  Google Scholar 

  6. Kurra N, Bhadram VS, Narayana C, Kulkarni GU (2013) Few layer graphene to graphitic films: infrared photoconductive versus bolometric response. Nanoscale 5:381–389

    Article  Google Scholar 

  7. Downs C, Vandervelde TE (2013) Progress in infrared photodetectors since 2000. Sensors 13:5054–5098

    Article  Google Scholar 

  8. Pescaglini A, Iacopino D (2015) Metal nanoparticle-semiconductor nanowire hybrid nanostructures for plasmon-enhanced optoelectronics and sensing. J Mater Chem C 3:11785–11800

    Article  Google Scholar 

  9. Kuman RTR, Karunagaran B, Mangalaraj D, Narayandass SK, Manoravi P, Joseph M, Gopal V (2003) Pulsed laser deposited vanadium oxide thin films for uncooled infrared detectors. Sens Actuators A Phys 107:62–67

    Article  Google Scholar 

  10. Danilov OB, Klimov VA, Mikheeva OP, Sidorov AI, Tul’skii SA, Shadrin EB, Yachnev IL (2003) Optical limitation of Mid-IR radiation in vanadium dioxide films. Tech Phys Lett 48:73–79

    Google Scholar 

  11. Varghese B, Tamang R, Tok ES, Mhaisalkar SG, Sow CH (2010) Photothermoelectric effects in localized photocurrent of individual VO2 nanowires. J Phys Chem C 114:15149–15156

    Article  Google Scholar 

  12. Wang X, Gao HW (2015) Distinguishing the photothermal and photoinjection effects in vanadium dioxide nanowires. Nano Lett 15:7037–7042

    Article  Google Scholar 

  13. Lu JP, Liu HW, Deng SZ, Zheng MR, Wang YH, Kan van JA, Tang SH, Zhang XH, Sow CH, Mhaisalkar SG (2014) Highly sensitive and multispectral responsive phototransistor using tungsten-doped VO2 nanowires. Nanoscale 6:7619–7627

    Article  Google Scholar 

  14. Xiao Y, Zhai ZH, Shi QW, Zhu LG, Li J, Huang WX, Yue F, Hu YY, Peng QX, Li ZR (2015) Ultrafast terahertz modulation characteristic of tungsten doped vanadium dioxide nanogranular film revealed by time-resolved terahertz spectroscopy. Appl Phys Lett 107:031906

    Article  Google Scholar 

  15. Wu YF, Fan LL, Huang WF, Chen SM, Chen S, Chen FH, Zou CW, Wu ZY (2014) Depressed transition temperature of WxV1-xO2: mechanistic insights from the X-Ray absorption fine structure (XAFS) spectroscopy. Phys Chem Chem Phys 16:17705–17714

    Article  Google Scholar 

  16. Pergament A, Stefanovich G, Berezina O, Kirienko D (2013) Electrical conductivity of tungsten doped vanadium dioxide obtained by the Sol-Gel technique. Thin Solid Films 531:572–576

    Article  Google Scholar 

  17. Wu CZ, Feng F, Xie Y (2013) Design of vanadium oxide structures with controllable electrical properties for energy applications. Chem Soc Rev 42:5157–5183

    Article  Google Scholar 

  18. Li ZJ, Hu ZP, Peng J, Wu CZ, Yang YC, Feng F, Gao P, Yang JL, Xie Y (2014) Ultrahigh infrared photoresponse from core-shell single domain VO2/V2O5 heterostructure in nanobeam. Adv Funct Mater 24:1821–1830

    Article  Google Scholar 

  19. Wu JM, Chang WE (2014) Ultrahigh responsivity and external quantum efficiency of an ultraviolet-light photodetector based on a single VO2 microwire. ACS Appl Mater Interfaces 6:14286–14292

    Article  Google Scholar 

  20. Berber S, Kwon YK, Tomanek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616

    Article  Google Scholar 

  21. Jiang KL, Wang JP, Li QQ, Liu LA, Liu CH, Fan SS (2011) Superaligned carbon nanotube arrays, films, and yarns: a road to applications. Adv Mater 23:1154–1161

    Article  Google Scholar 

  22. Xiao L, Ma H, Liu JK, Zhao W, Jia Y, Zhao Q, Liu K, Wu Y, Wei Y, Fan SS, Jiang KL (2015) Fast adaptive thermal camouflage based on flexible VO2/Graphene/CNT thin films. Nano Lett 15:8365–8370

    Article  Google Scholar 

  23. Liu K, Sun YH, Chen L, Feng C, Feng XF, Jiang KL, Zhao YG, Fan SS (2008) Controlled growth of super-aligned carbon nanotube arrays for spinning continuous unidirectional sheets with tunable physical properties. Nano Lett 8:700–705

    Article  Google Scholar 

  24. Konstantatos G, Howard I, Fischer A, Hoogland S, Clifford J, Klem E, Levina L, Sargent EH (2006) Ultrasensitive solution-cast quantum dot photodetectors. Nature 442:180–183

    Article  Google Scholar 

  25. Wu JM, Liou LB (2011) Room temperature photo-induced phase transitions of VO2 nanodevices. J Mater Chem 21:5499–5504

    Article  Google Scholar 

  26. Zhai TY, Liu HM, Li HQ, Fang XS, Liao MY, Li L, Zhou HS, Koide Y, Bando Y, Goberg D (2010) Centimeter-long V2O5 nanowires: from synthesis to field-emission, electrochemical, electrical transport, and photoconductive properties. Adv Mater 22:2547–2552

    Article  Google Scholar 

  27. Xia FN, Mueller T, Lin YM, Valdes-Garcia A, Avouris P (2009) Ultrafast graphene photodetector. Nat Nanotechnol 4:839–843

    Article  Google Scholar 

  28. Chitara B, Panchakarla LS, Krupanidhi SB, Rao CNR (2011) Infrared photodetectors based on reduced graphene oxide and graphene nanoribbons. Adv Mater 23:5419–5424

    Article  Google Scholar 

  29. Yin ZY, Li H, Li H, Jiang L, Shi YM, Sun YH, Lu G, Zhang Q, Chen XD, Zhang H (2012) Single-layer MoS2 phototransistors. ACS Nano 6:74–80

    Article  Google Scholar 

  30. Choi W, Cho MY, Konar A, Lee JH, Cha GB, Hong SC, Kim S, Kim J, Jena D, Joo J, Kim S (2012) High-detectivity multilayer MoS2 phototransistors with spectral response from ultraviolet to infrared. Adv Mater 24:5832–5836

    Article  Google Scholar 

Download references

Acknowledgement

This work was supported by National Basic Research Program of China (973 Program) (NO. 2012CB932303), the National Natural Science Foundation of China (NOs. 51472142, 51471162), the CAS/SAFEA International Partnership Program for Creative Research Teams, and the Foundation of Director of Institute of Solid State Physics, Chinese Academy of Sciences (Grant No. 2016DFY06).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guang Tao Fei.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, W.B., Ma, H., Wei, Y. et al. Preparation and infrared response properties of vanadium dioxide nanowire/carbon nanotube composite film. J Mater Sci 52, 7224–7231 (2017). https://doi.org/10.1007/s10853-017-0959-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0959-z

Keywords

Navigation