Skip to main content
Log in

Au nanoparticles confined in hybrid shells of silica nanospheres for solvent-free aerobic cyclohexane oxidation

Journal of Materials Science Aims and scope Submit manuscript

Abstract

Gold nanoparticles (NPs) confined in hybrid shells of organic linker-assisted silica nanospheres (GOS) have been prepared through a facile approach using organic amino functional groups covalently bound to shells of silica nanospheres for anchoring AuCl4 . Due to the hydrolysis of urea, the gold precursor was in situ reduced in the hybrid shells of silica nanospheres under desired alkaline and temperature conditions. Organic functional groups (–SiCH2CH2CH2NHCH2CH2NH2) were introduced into shells of silica nanospheres via a co-condensation of tetraethyl orthosilicate and 3-(2-aminoethylamino)propyl dimethoxymethylsilane. The results indicate that Au NPs with <2 nm diameters were highly dispersed and well confined in the hybrid shells of silica nanospheres through the anchorage of organic functional groups under condensation process. The obtained GOS catalyst exhibited efficient catalytic activity for solvent-free catalytic oxidation of cyclohexane with 94.8% selectivity to cyclohexanone and cyclohexanol (KA oil) and adipic acid under 150 °C, 1.5 MPa O2 for 3 h.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price includes VAT (France)

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. Costas M (2011) Selective C–H oxidation catalyzed by metalloporphyrins. Coord Chem Rev 255:2912–2932

    Article  Google Scholar 

  2. Roduner E, Kaim W, Sarkar B, Urlacher VB, Pleiss J, Gläser R, Einicke W, Sprenger GA, Beifuß U, Klemm E, Liebner C, Hieronymus H, Hsu S, Plietker B, Laschat S (2013) Selective catalytic oxidation of C–H bonds with molecular oxygen. ChemCatChem 5:82–112

    Article  Google Scholar 

  3. Conte M, Liu X, Murphy DM, Taylor SH, Whiston K, Hutchings GJ (2016) Insights into the reaction mechanism of cyclohexane oxidation catalysed by molybdenum blue nanorings. Catal Lett 146:126–135

    Article  Google Scholar 

  4. Garcia-Bosch I, Siegler MA (2016) Copper-catalyzed oxidation of alkanes with H2O2 under a Fenton-like regime. Angew Chem Int Ed 55:12873–12876

    Article  Google Scholar 

  5. Chen LF, Hu JC, Richards R (2009) Intercalation of aggregation-free and well-dispersed gold nanoparticles into the walls of mesoporous silica as a robust ‘green’ catalyst for n-alkane oxidation. J Am Chem Soc 131:914–915

    Article  Google Scholar 

  6. Cao MJ, She YB, Fu HY, Yu YM, Li H, Wang T (2015) Rate-limiting step of the iron porphyrin-catalysed oxidation of cyclohexane to adipic acid by DFT method. Mol Simul 41:262–270

    Article  Google Scholar 

  7. Yu H, Peng F, Tan J, Hu X, Wang H, Yang J, Zheng W (2011) Selective catalysis of the aerobic oxidation of cyclohexane in the liquid phase by carbon nanotubes. Angew Chem Int Ed 50:3978–3982

    Article  Google Scholar 

  8. Wang CH, Chen LF, Qi ZW (2011) One-pot synthesis of gold nanoparticles embedded in silica for cyclohexane oxidation. Catal Sci Technol 3:1123–1128

    Article  Google Scholar 

  9. Haruta M, Kobayashi T, Sano H, Yamada N (1987) Novel gold catalysts for the oxidation of carbon monoxide at a temperature far below 0 °C. Chem Lett 16:405–408

    Article  Google Scholar 

  10. Haruta M (2005) Catalysis: gold rush. Nature 437:1098–1099

    Article  Google Scholar 

  11. Zhu H, Lee B, Dai S, Overbury SH (2003) Coassembly synthesis of ordered mesoporous silica materials containing Au nanoparticles. Langmuir 19:3974–3980

    Article  Google Scholar 

  12. Tai Y, Watanabe M, Murakami J (2007) Composite formation of thiol-capped Au nanoparticles and mesoporous silica prepared by a sol-gel method. J Mater Sci 42:1285–1292. doi:10.1007/s10853-006-1396-6

    Article  Google Scholar 

  13. Ciriminna R, Falletta E, Pina CD, Teles JH, Pagliaro M (2016) Industrial applications of gold catalysis. Angew Chem Int Ed 55:14210–14217

    Article  Google Scholar 

  14. Yin Y, Rioux RM, Erdonmez CK, Hughes S, Somorjai GA, Alivisatos AP (2004) Formation of hollow nanocrystals through the nanoscale Kirkendall effect. Science 304:711–714

    Article  Google Scholar 

  15. Tan L, Chen D, Liu H, Tang F (2010) A silica nanorattle with a mesoporous shell: an ideal nanoreactor for the preparation of tunable gold cores. Adv Mater 22:4885–4889

    Article  Google Scholar 

  16. Magureanu M, Mandache NB, Hu JC, Richards R, Florea M, Parvulescu VI (2007) Plasma-assisted catalysis total oxidation of trichloroethylene over gold nano-particles embedded in SBA-15 catalysts. Appl Catal B: Environ 76:275–281

    Article  Google Scholar 

  17. Schuchardt U, Cardoso D, Sercheli R, Pereira R, da Cruz RS, Guerreiro MC, Mandelli D, Spinacè EV, Pires EL (2011) Cyclohexane oxidation continues to be a challenge. Appl Catal A Gen 211:1–17

    Article  Google Scholar 

  18. Liu J, Yang HQ, Kleita F, Chen ZG, Yang T, Strounina E, Lu GQM, Qiao SZ (2012) Yolk–shell hybrid materials with a periodic mesoporous organosilica shell: ideal nanoreactors for selective alcohol oxidation. Adv Funct Mater 22:591–599

    Article  Google Scholar 

  19. Nicole L, Rozes L, Sanchez C (2010) Integrative approaches to hybrid multifunctional materials: from multidisciplinary research to applied technologies. Adv Mater 22:3208–3214

    Article  Google Scholar 

  20. Stöber W, Fink A, Bohn E (1968) Controlled growth of monodisperse silica spheres in the micron size range. J Colloid Interface Sci 26:62–69

    Article  Google Scholar 

  21. Ogawa M, Kaiho H (2002) Homogeneous precipitation of uniform hydrotalcite particles. Langmuir 18:4240–4242

    Article  Google Scholar 

  22. Chen LF, Song Z, Wang X, Prikhodko SV, Hu JC, Kadambaka S, Richards R (2009) Three-dimensional morphology control during wet chemical synthesis of porous chromium oxide spheres. ACS Appl Mater Interfaces 1:1931–1937

    Article  Google Scholar 

  23. Phonthammachai N, White TJ (2007) One-step synthesis of highly dispersed gold nanocrystals on silica spheres. Langmuir 23:11421–11424

    Article  Google Scholar 

  24. Hofmeister H, Miclea PT, Mörke W (2002) Metal nanoparticle coating of oxide nanospheres for core–shell structures. Part Part Syst Char 19:359–365

    Article  Google Scholar 

  25. Anantharaman A, Wu X, Hadinoto K, Chew JW (2015) Impact of continuous particle size distribution width and particle sphericity on minimum pickup velocity in gas–solid pneumatic conveying. Chem Eng Sci 130:92–100

    Article  Google Scholar 

  26. Yang M, Allard LF, Flytzani-Stephanopoulos M (2013) Atomically dispersed Au–(OH) x species bound on titania catalyze the low-temperature water–gas shift reaction. J Am Chem Soc 135:3768–3771

    Article  Google Scholar 

  27. Liu YM, Tsunoyama H, Akita T, Xie SH, Tsukuda T (2011) Aerobic oxidation of cyclohexane catalyzed by size-controlled Au clusters on hydroxyapatite: size effect in the sub-2 nm regime. ACS Catal 1:2–6

    Article  Google Scholar 

  28. Paunovic V, Ordomsky V, D’Angelo MFN, Schouten JC, Nijhuis TA (2014) Direct synthesis of hydrogen peroxide over Au–Pd catalyst in a wall-coated microchannel. J Catal 309:325–332

    Article  Google Scholar 

  29. Hiraoui M, Guendouz M, Lorrain N, Moadhen A, Haji L, Oueslati M (2011) Spectroscopy studies of functionalized oxidized porous silicon surface for biosensing applications. Mater Chem Phys 128:151–156

    Article  Google Scholar 

  30. Siavashani AZ, Nazarpak MH, Fayyazbakhsh F, Toliyat T, Mclnnes SJP, Solati-Hashjin M (2016) Effect of amino-functionalization on insulin delivery and cell viability for two types of silica mesoporous structures. J Mater Sci 51:10897–10909. doi:10.1007/s10853-016-0301-1

    Article  Google Scholar 

  31. Wang PY, Lu QS, Li JG (2010) Palladium supported on functionalized mesoporous silica as an efficient catalyst for Heck reaction. Mater Res Bull 45:129–134

    Article  Google Scholar 

  32. Shaw WHR, Bordeaux JJ (1955) The decomposition of urea in aqueous media. J Am Chem Soc 77:4729–4734

    Article  Google Scholar 

  33. Zanella R, Delannoy L, Louis C (2005) Mechanism of deposition of gold precursors onto TiO2 during the preparation by cation adsorption and deposition-precipitation with NaOH and urea. Appl Catal A Gen 291:62–72

    Article  Google Scholar 

  34. Luan Z, Meloni PA, Czernuszewicz RS, Kevan L (1997) Raman spectroscopy of vanadium oxide species immobilized at surface titanium centers of mesoporous titanosilicate TiMCM-41 molecular sieves. J Phys Chem B 101:9046–9051

    Article  Google Scholar 

  35. Lee EL, Wachs IE (2008) In situ Raman spectroscopy of SiO2-supported transition metal oxide catalysts: an isotopic 18O–16O exchange study. J Phys Chem C 112:6487–6498

    Article  Google Scholar 

  36. Murray CA, Bodoff S (1996) Cyanide adsorption on silver and gold overlayers on island films as determined by surface enhanced Raman scattering. J Chem Phys 85:573–584

    Article  Google Scholar 

  37. Beltramo GL, Shubina TE, Mitchell SJ, Koper MTM (2004) Cyanide adsorption on gold electrodes: a combined surface enhanced Raman spectroscopy and density functional theory study. J Electroanal Chem 563:111–120

    Article  Google Scholar 

  38. Cho KH, Choo J, Joo SW (2005) Tautomerism of thymine on gold and silver nanoparticle surfaces: surface-enhanced Raman scattering and density functional theory calculation study. J Mol Struct 738:9–14

    Article  Google Scholar 

  39. Angheluta AD, Dascalu A, Fifere A, Coreaba A, Pricop L, Chiriac H, Tura V, Pinteala M, Simionescu BC (2012) Progress in the synthesis and characterization of magnetite nanoparticles with amino groups on the surface. J Magn Magn Mater 324:1679–1689

    Article  Google Scholar 

  40. Ivashenko O, van Herpt JT, Feringa BL, Browne WR, Rudolf P (2013) Rapid reduction of self-assembled monolayers of a disulfide terminated para-nitrophenyl alkyl ester on roughened Au surfaces during XPS measurements. Chem Phys Lett 559:76–81

    Article  Google Scholar 

  41. La Parola V, Kantcheva M, Milanova M, Venezia AM (2013) Structure control of silica-supported mono and bimetallic Au-Pt catalysts via mercapto capping synthesis. J Catal 298:170–178

    Article  Google Scholar 

  42. Qian K, Luo LF, Bao HZ, Hua Q, Jiang ZQ, Huang WX (2013) Catalytically active structures of SiO2-supported Au nanoparticles in low-temperature CO oxidation. Catal Sci Technol 3:679–687

    Article  Google Scholar 

  43. Wang LB, Zhao ST, Liu CX, Li C, Li X, Li HL, Wang CY, Ma C, Li ZY, Zeng J (2015) Aerobic oxidation of cyclohexane on catalysts based on twinned and single-crystal Au75Pd25 bimetallic nanocrystals. Nano Lett 15:2875–2880

    Article  Google Scholar 

  44. Stratakis M, Garcia H (2012) Catalysis by supported gold nanoparticles: beyond aerobic oxidative processes. Chem Rev 112:4469–4506

    Article  Google Scholar 

  45. Feng X, Duan XZ, Yang J, Qian G, Zhou XG, Chen D, Yuan WK (2015) Au/uncalcined TS-1 catalysts for direct propene epoxidation with H2 and O2: effects of Si/Ti molar ratio and Au loading. Chem Eng J 278:234–239

    Article  Google Scholar 

  46. Dong K, Song YT, Liu XM, Cheng WG, Yao XQ, Zhang SJ (2012) Understanding structures and hydrogen bonds of ionic liquids at the electronic level. J Phys Chem B 116:1007–1017

    Article  Google Scholar 

  47. Xie J, Wang YJ, Wei Y (2009) Immobilization of manganese tetraphenylporphyrin on Au/SiO2 as new catalyst for cyclohexane oxidation with air. Catal Commun 11:110–113

    Article  Google Scholar 

  48. Wu PP, Bai P, Yan ZF, Zhao GXS (2015) Gold nanoparticles supported on mesoporous silica: origin of high activity and role of Au NPs in selective oxidation of cyclohexane. Sci Rep 6:18817

    Article  Google Scholar 

  49. Zhou WJ, Wischert R, Xue K, Zheng YT, Albela B, Bonneviot L, Clacens JM, De Campo F, Pera-Titus M, Wu P (2014) Highly selective liquid-phase oxidation of cyclohexane to KA Oil over Ti–MWW catalyst: evidence of formation of oxyl radicals. ACS Catal 4:53–6254

    Article  Google Scholar 

  50. Maksimchuk NV, Kovalenko KA, Fedin VP, Kholdeeva OA (2012) Cyclohexane selective oxidation over metal–organic frameworks of MIL-101 family: superior catalytic activity and selectivity. Chem Commun 48:6812–6814

    Article  Google Scholar 

  51. Costentin C, Drouet S, Robert M, Savéant JM (2012) Turnover numbers, turnover frequencies, and overpotential in molecular catalysis of electrochemical reactions: cyclic voltammetry and preparative-scale electrolysis. J Am Chem Soc 134:11235–11242

    Article  Google Scholar 

  52. Chavan S, Srinivas D, Ratnasamy P (2012) Oxidation of cyclohexane, cyclohexanone, and cyclohexanol to adipic acid by a non-HNO3 route over Co/Mn cluster complexes. J Catal 212:39–45

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (NSFC 21476084), the Open Projects of the State Key Laboratory of Agricultural Microbiology (AMLKF201104) and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials (2014MCIMKF02), PetroChina Innovation Foundation and the Fundamental Research Funds for the Central Universities of China.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lifang Chen.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chen, L., Zhou, Y., Gui, Z. et al. Au nanoparticles confined in hybrid shells of silica nanospheres for solvent-free aerobic cyclohexane oxidation. J Mater Sci 52, 7186–7198 (2017). https://doi.org/10.1007/s10853-017-0954-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0954-4

Keywords

Navigation