Skip to main content

Advertisement

Log in

Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells

  • In Honor of Larry Hench
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The release of ions that can significantly contribute toward cellular response is an important characteristic of bioactive glasses (BG). Here, ionic extracts of three different compositions of BG powders in 60 mol% SiO2, x mol% CaO (x = 28, 32 and 36), x mol% P2O5 (x = 12, 8 and 4) compositional system were utilized to study their effect on the viability, differentiation and mineralization of dental pulp stem cells (DPSCs) in vitro. ICP was applied to detect the exact ionic concentrations released from different composition of BG. DPSCs treated with conditioned media from the glass with 4 mol% P2O5 (BGCM1, media containing 44.01 ± 0.6 mg/L Si, 61.72 ± 0.1 mg/L Ca and 7.57 ± 0.01 mg/L P) were more metabolically active compared to conditioned media from the glass with 8 mol% P2O5 (BGCM2, media with 47.36 ± 0.7 mg/L Si, 57.4 ± 0.1 mg/L Ca and 14.54 ± 0.2 mg/L P), at all times tested, but in all cases the process was slower than the control. Cells exposed to media conditioned by the glass with 12 mol% P2O5 (BGCM3, 40.46 ± 0.5 mg/L Si, 61. 85 ± 0.3 mg/L Ca and 28.43 ± 0.3 mg/L P) responded differently, such that cells showed to be more metabolically active than control at day 3, but then similar to or lower than control at higher time points. Differentiation of DPSCs toward osteogenic lineage in the presence of BGCM was assessed by Alizarin red staining. Cells treated with high phosphate BGCM3 displayed a higher density of red mineralized nodules than cells treated with BGCM1 and BGCM2 after 21 days of culture in non-osteogenic medium. BGCM3 was therefore chosen for gene expression studies. Osteogenic differentiation of DPSCs in the presence and/or absence of BGCM3 or osteogenic supplements were studied by RT-PCR. Overall, the results demonstrated that, in the absence of osteogenic supplements, BGCM3 group showed a significantly higher mRNA expression levels for alkaline phosphatase at day 7, osteopontin and osteonectin at days 7 and 14, and a high level of collagen I at day 14, compared to negative control group (BM−). Overall, the results obtained from BGCM3 group are beneficial for the design and manufacture of scaffolds or particulates with tailored ion release for a range of bone repair applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen W, Greenlee T (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 5(6):117–141

    Article  Google Scholar 

  2. Hench LL, Paschall H (1973) Direct chemical bond of bioactive glass-ceramic materials to bone and muscle. J Biomed Mater Res 7(3):25–42

    Article  Google Scholar 

  3. Hench LL, West JK (1996) Biological applications of bioactive glasses. Life Chem Rep 13:187–241

    Google Scholar 

  4. Jones JR, Sepulveda P, Hench LL (2001) Dose-dependent behavior of bioactive glass dissolution. J Biomed Mater Res 58(6):720–726

    Article  Google Scholar 

  5. Sepulveda P, Jones JR, Hench LL (2001) Characterization of melt-derived 45S5 and sol-gel–derived 58S bioactive glasses. J Biomed Mater Res 58(6):734–740

    Article  Google Scholar 

  6. Sepulveda P, Jones J, Hench L (2002) In vitro dissolution of melt-derived 45S5 and sol-gel derived 58S bioactive glasses. J Biomed Mater Res 61(2):301–311

    Article  Google Scholar 

  7. Oonishi H, Hench L, Wilson J, Sugihara F, Tsuji E, Matsuura M et al (2000) Quantitative comparison of bone growth behavior in granules of Bioglass, A-W glass-ceramic, and hydroxyapatite. J Biomed Mater Res 51(1):37–46

    Article  Google Scholar 

  8. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  Google Scholar 

  9. Xynos ID, Edgar AJ, Buttery LD, Hench LL, Polak JM (2001) Gene-expression profiling of human osteoblasts following treatment with the ionic products of Bioglass® 45S5 dissolution. J Biomed Mater Res 55(2):151–157

    Article  Google Scholar 

  10. Li R, Clark A, Hench L (1991) An investigation of bioactive glass powders by sol-gel processing. J Appl Biomater 2(4):231–239

    Article  Google Scholar 

  11. Reilly GC, Radin S, Chen AT, Ducheyne P (2007) Differential alkaline phosphatase responses of rat and human bone marrow derived mesenchymal stem cells to 45S5 bioactive glass. Biomaterials 28(28):4091–4097

    Article  Google Scholar 

  12. Rahaman MN, Day DE, Bal BS, Fu Q, Jung SB, Bonewald LF et al (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373

    Article  Google Scholar 

  13. Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486

    Article  Google Scholar 

  14. Oonishi H, Kushitani S, Yasukawa E, Iwaki H, Hench LL, Wilson J et al (1997) Particulate bioglass compared with hydroxyapatite as a bone graft substitute. Clin Orthop Relat Res 334:316–325

    Article  Google Scholar 

  15. Wheeler D, Eschbach E, Hoellrich R, Montfort M, Chamberland D (2000) Assessment of resorbable bioactive material for grafting of critical-size cancellous defects. J Orthop Res 18(1):140–148

    Article  Google Scholar 

  16. Fujibayashi S, Neo M, Kim H-M, Kokubo T, Nakamura T (2003) A comparative study between in vivo bone ingrowth and in vitro apatite formation on Na2O–CaO–SiO2 glasses. Biomaterials 24(8):1349–1356

    Article  Google Scholar 

  17. Hupa L, Karlsson KH, Hupa M, Aro HT (2010) Comparison of bioactive glasses in vitro and in vivo. Glass Technol-Eur J Glass Sci Technol Part A 51(2):89–92

    Google Scholar 

  18. Li H, Chen S, Wu Y, Jiang J, Ge Y, Gao K et al (2012) Enhancement of the osseointegration of a polyethylene terephthalate artificial ligament graft in a bone tunnel using 58S bioglass. Int Orthop 36(1):191–197

    Article  Google Scholar 

  19. Midha S, Kim TB, van den Bergh W, Lee PD, Jones JR, Mitchell CA (2013) Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater 9(11):9169–9182

    Article  Google Scholar 

  20. Xynos I, Hukkanen M, Batten J, Buttery L, Hench L, Polak J (2000) Bioglass® 45S5 stimulates osteoblast turnover and enhances bone formation in vitro: implications and applications for bone tissue engineering. Calcif Tissue Int 67(4):321–329

    Article  Google Scholar 

  21. Sun JY, Yang YS, Zhong J, Greenspan DC (2007) The effect of the ionic products of Bioglass® dissolution on human osteoblasts growth cycle in vitro. J Tissue Eng Regen Med 1(4):281–286

    Article  Google Scholar 

  22. Moura J, Teixeira LN, Ravagnani C, Peitl O, Zanotto ED, Beloti MM et al (2007) In vitro osteogenesis on a highly bioactive glass-ceramic (Biosilicate®). J Biomed Mater Res, Part A 82(3):545–557

    Article  Google Scholar 

  23. Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A et al (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26(23):4847–4855

    Article  Google Scholar 

  24. Marie PJ (2010) The calcium-sensing receptor in bone cells: a potential therapeutic target in osteoporosis. Bone 46(3):571–576

    Article  Google Scholar 

  25. Reffitt D, Ogston N, Jugdaohsingh R, Cheung H, Evans BAJ, Thompson R et al (2003) Orthosilicic acid stimulates collagen type 1 synthesis and osteoblastic differentiation in human osteoblast-like cells in vitro. Bone 32(2):127–135

    Article  Google Scholar 

  26. Carlisle EM (1970) Silicon: a possible factor in bone calcification. Science 167(3916):279–280

    Article  Google Scholar 

  27. Damen J, Ten Cate J (1992) Silica-induced precipitation of calcium phosphate in the presence of inhibitors of hydroxyapatite formation. J Dent Res 71(3):453–457

    Article  Google Scholar 

  28. Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774

    Article  Google Scholar 

  29. Hench LL, Xynos ID, Polak JM (2004) Bioactive glasses for in situ tissue regeneration. J Biomater Sci Polym Ed 15(4):543–562

    Article  Google Scholar 

  30. Alcaide M, Portolés P, López-Noriega A, Arcos D, Vallet-Regí M, Portoles M (2010) Interaction of an ordered mesoporous bioactive glass with osteoblasts, fibroblasts and lymphocytes, demonstrating its biocompatibility as a potential bone graft material. Acta Biomater 6(3):892–899

    Article  Google Scholar 

  31. Gentleman E, Stevens MM, Hill R, Brauer DS (2013) Surface properties and ion release from fluoride-containing bioactive glasses promote osteoblast differentiation and mineralization in vitro. Acta Biomater 9(3):5771–5779

    Article  Google Scholar 

  32. Jell G, Notingher I, Tsigkou O, Notingher P, Polak J, Hench L et al (2008) Bioactive glass-induced osteoblast differentiation: a noninvasive spectroscopic study. J Biomed Mater Res, Part A 86(1):31–40

    Article  Google Scholar 

  33. Christodoulou I, Buttery LD, Saravanapavan P, Tai G, Hench LL, Polak JM (2005) Dose-and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res B Appl Biomater 74(1):529–537

    Article  Google Scholar 

  34. Gong W, Huang Z, Dong Y, Gan Y, Li S, Gao X et al (2014) Ionic extraction of a novel nano-sized bioactive glass enhances differentiation and mineralization of human dental pulp cells. J Endod 40(1):83–88

    Article  Google Scholar 

  35. Bielby RC, Pryce RS, Hench LL, Polak JM (2005) Enhanced derivation of osteogenic cells from murine embryonic stem cells after treatment with ionic dissolution products of 58S bioactive sol-gel glass. Tissue Eng 11(3–4):479–488

    Article  Google Scholar 

  36. Tsigkou O, Jones JR, Polak JM, Stevens MM (2009) Differentiation of fetal osteoblasts and formation of mineralized bone nodules by 45S5 Bioglass® conditioned medium in the absence of osteogenic supplements. Biomaterials 30(21):3542–3550

    Article  Google Scholar 

  37. Christodoulou I, Buttery LD, Tai G, Hench LL, Polak JM (2006) Characterization of human fetal osteoblasts by microarray analysis following stimulation with 58S bioactive gel-glass ionic dissolution products. J Biomed Mater Res B Appl Biomater 77(2):431–446

    Article  Google Scholar 

  38. Alves EG, Serakides R, Rosado IR, Pereira MM, Ocarino NM, Oliveira HP et al (2015) Effect of the ionic product of bioglass 60 s on osteoblastic activity in canines. BMC Vet Res 11(1):1

    Article  Google Scholar 

  39. Li H, Sun J (2011) Effects of dicalcium silicate coating ionic dissolution products on human mesenchymal stem-cell proliferation and osteogenic differentiation. J Int Med Res 39(1):112–128

    Article  Google Scholar 

  40. Tsigkou O, Labbaf S, Stevens MM, Porter AE, Jones JR (2014) Monodispersed bioactive glass submicron particles and their effect on bone marrow and adipose tissue-derived stem cells. Adv Healthc Mater 3(1):115–125

    Article  Google Scholar 

  41. Bielby RC, Christodoulou IS, Pryce RS, Radford WJ, Hench LL, Polak JM (2004) Time-and concentration-dependent effects of dissolution products of 58S sol-gel bioactive glass on proliferation and differentiation of murine and human osteoblasts. Tissue Eng 10(7–8):1018–1026

    Article  Google Scholar 

  42. Mori G, Brunetti G, Oranger A, Carbone C, Ballini A, Muzio LL et al (2011) Dental pulp stem cells: osteogenic differentiation and gene expression. Ann N Y Acad Sci 1237(1):47–52

    Article  Google Scholar 

  43. Esmaeili, Alifarja S, Nourbakhsh N, Talebi A, Nasr EM (2012) Study of gene expression of BDNF, NGF, NT3 and NT4 Neurotrophins in different stages of human denral pulp stem cells differentiation; Poster presentation

  44. Chang S-W, Lee S-Y, Kum K-Y, Kim E-C (2014) Effects of ProRoot MTA, Bioaggregate, and Micromega MTA on odontoblastic differentiation in human dental pulp cells. J Endod 40(1):113–118

    Article  Google Scholar 

  45. Papaccio G, Graziano A, d’Aquino R, Graziano MF, Pirozzi G, Menditti D et al (2006) Long-term cryopreservation of dental pulp stem cells (SBP-DPSCs) and their differentiated osteoblasts: a cell source for tissue repair. J Cell Physiol 208(2):319–325

    Article  Google Scholar 

  46. d’Aquino R, Papaccio G, Laino G, Graziano A (2008) Dental pulp stem cells: a promising tool for bone regeneration. Stem Cell Rev 4(1):21–26

    Article  Google Scholar 

  47. Yamada Y, Fujimoto A, Ito A, Yoshimi R, Ueda M (2006) Cluster analysis and gene expression profiles: a cDNA microarray system-based comparison between human dental pulp stem cells (hDPSCs) and human mesenchymal stem cells (hMSCs) for tissue engineering cell therapy. Biomaterials 27(20):3766–3781

    Article  Google Scholar 

  48. Nourbakhsh N, Talebi A, Mousavi B, Nadali F, Torabinejad M, Karbalaie K et al (2008) Isolation of mesenchymal stem cells from dental pulp of exfoliated human deciduous teeth. Cell J 10(2):101–108

    Google Scholar 

  49. Hilkens P, Gervois P, Fanton Y, Vanormelingen J, Martens W, Struys T et al (2013) Effect of isolation methodology on stem cell properties and multilineage differentiation potential of human dental pulp stem cells. Cell Tissue Res 353(1):65–78

    Article  Google Scholar 

  50. Gronthos S, Brahim J, Li W, Fisher L, Cherman N, Boyde A et al (2002) Stem cell properties of human dental pulp stem cells. J Dent Res 81(8):531–535

    Article  Google Scholar 

  51. Mahony O, Tsigkou O, Ionescu C, Minelli C, Ling L, Hanly R et al (2010) Silica-gelatin hybrids with tailorable degradation and mechanical properties for tissue regeneration. Adv Funct Mater 20(22):3835–3845

    Article  Google Scholar 

  52. Brückner R, Tylkowski M, Hupa L, Brauer DS (2016) Controlling the ion release from mixed alkali bioactive glasses by varying modifier ionic radii and molar volume. J Mater Chem B 4(18):3121–3134

    Article  Google Scholar 

  53. Fredholm YC, Karpukhina N, Brauer DS, Jones JR, Law RV, Hill RG (2012) Influence of strontium for calcium substitution in bioactive glasses on degradation, ion release and apatite formation. J R Soc Interface 9(70):880–889

    Article  Google Scholar 

  54. Stein GS, Lian JB (1993) Molecular mechanisms mediating developmental and hormone-regulated expression of genes in osteoblasts. Cellular and molecular biology of bone. Academic, New York, pp 47–95

    Google Scholar 

  55. Julien M, Khoshniat S, Lacreusette A, Gatius M, Bozec A, Wagner EF et al (2009) Phosphate-dependent regulation of MGP in osteoblasts: role of ERK1/2 and Fra-1. J Bone Miner Res 24(11):1856–1868

    Article  Google Scholar 

  56. Beck GR, Moran E, Knecht N (2003) Inorganic phosphate regulates multiple genes during osteoblast differentiation, including Nrf2. Exp Cell Res 288(2):288–300

    Article  Google Scholar 

  57. Salih V, Franks K, James M, Hastings G, Knowles J, Olsen I (2000) Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. J Mater Sci Mater Med 11(10):615–620

    Article  Google Scholar 

  58. Lian JB, Stein GS, Stein JL, Van Wijnen AJ (1998) Regulated expression of the bone-specific osteocalcin gene by vitamins and hormones. Vitam Horm 55:443–509

    Article  Google Scholar 

  59. Owen TA, Aronow M, Shalhoub V, Barone LM, Wilming L, Tassinari MS et al (1990) Progressive development of the rat osteoblast phenotype in vitro: reciprocal relationships in expression of genes associated with osteoblast proliferation and differentiation during formation of the bone extracellular matrix. J Cell Physiol 143(3):420–430

    Article  Google Scholar 

  60. Kasperk C, Wergedal J, Strong D, Farley J, Wangerin K, Gropp H et al (1995) Human bone cell phenotypes differ depending on their skeletal site of origin. J Clin Endocrinol Metab 80(8):2511–2517

    Google Scholar 

  61. Khanna-Jain R, Mannerström B, Vuorinen A, Sándor GK, Suuronen R, Miettinen S (2012) Osteogenic differentiation of human dental pulp stem cells on β-tricalcium phosphate/poly (l-lactic acid/caprolactone) three-dimensional scaffolds. J Tissue Eng 3(1):2041731412467998

    Article  Google Scholar 

  62. Coelho M, Fernandes M (2000) Human bone cell cultures in biocompatibility testing. Part II: effect of ascorbic acid, β-glycerophosphate and dexamethasone on osteoblastic differentiation. Biomaterials 21(11):1095–1102

    Article  Google Scholar 

  63. Rupani A, Balint R, Cartmell SH (2012) Osteoblasts and their applications in bone tissue engineering. Cell Health and Cytoskeleton 4:49–61

    Google Scholar 

  64. Chung C-H, Golub EE, Forbes E, Tokuoka T, Shapiro IM (1992) Mechanism of action of β-glycerophosphate on bone cell mineralization. Calcif Tissue Int 51(4):305–311

    Article  Google Scholar 

  65. Wittrant Y, Bourgine A, Khoshniat S, Alliot-Licht B, Masson M, Gatius M et al (2009) Inorganic phosphate regulates Glvr-1 and-2 expression: role of calcium and ERK1/2. Biochem Biophys Res Commun 381(2):259–263

    Article  Google Scholar 

  66. Meyer U, Joos U, Wiesmann H (2004) Biological and biophysical principles in extracorporal bone tissue engineering: part I. Int J Oral Maxillofac Surg 33(4):325–332

    Article  Google Scholar 

  67. Ibaraki K, Termine JD, Whitson SW, Young MF (1992) Bone matrix mRNA expression in differentiating fetal bovine osteoblasts. J Bone Miner Res 7(7):743–754

    Article  Google Scholar 

  68. Allo BA, Lin S, Mequanint K, Rizkalla AS (2013) Role of bioactive 3D hybrid fibrous scaffolds on mechanical behavior and spatiotemporal osteoblast gene expression. ACS Appl Mater Interfac 5(15):7574–7583

    Article  Google Scholar 

  69. Isaac J, Nohra J, Lao J, Jallot E, Nedelec J-M, Berdal A et al (2011) Effects of strontium-doped bioactive glass on the differentiation of cultured osteogenic cells. Eur Cell Mater 21:130–143

    Article  Google Scholar 

  70. Siggelkow H, Rebenstorff K, Kurre W, Niedhart C, Engel I, Schulz H et al (1999) Development of the osteoblast phenotype in primary human osteoblasts in culture: comparison with rat calvarial cells in osteoblast differentiation. J Cell Biochem 75(1):22–35

    Article  Google Scholar 

  71. Golub EE, Boesze-Battaglia K (2007) The role of alkaline phosphatase in mineralization. Curr Opin Orthop 18(5):444–448

    Article  Google Scholar 

  72. Aubin JE (1998) Bone stem cells. J Cell Biochem 72(S30–31):73–82

    Article  Google Scholar 

  73. Bellows CG, Reimers S, Heersche JN (1999) Expression of mRNAs for type-I collagen, bone sialoprotein, osteocalcin, and osteopontin at different stages of osteoblastic differentiation and their regulation by 1, 25 dihydroxyvitamin D3. Cell Tissue Res 297(2):249–259

    Article  Google Scholar 

  74. Thurner PJ, Chen CG, Ionova-Martin S, Sun L, Harman A, Porter A et al (2010) Osteopontin deficiency increases bone fragility but preserves bone mass. Bone 46(6):1564–1573

    Article  Google Scholar 

  75. Razzouk S, Brunn J, Qin C, Tye C, Goldberg H, Butler W (2002) Osteopontin posttranslational modifications, possibly phosphorylation, are required for in vitro bone resorption but not osteoclast adhesion. Bone 30(1):40–47

    Article  Google Scholar 

  76. Alvarez Perez MA, Guarino V, Cirillo V, Ambrosio L (2012) In vitro mineralization and bone osteogenesis in poly (ε-caprolactone)/gelatin nanofibers. J Biomed Mater Res, Part A 100(11):3008–3019

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Sheyda Labbaf or Mohammad-Hossein Nasr Esfahani.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Houreh, A.B., Labbaf, S., Ting, HK. et al. Influence of calcium and phosphorus release from bioactive glasses on viability and differentiation of dental pulp stem cells. J Mater Sci 52, 8928–8941 (2017). https://doi.org/10.1007/s10853-017-0946-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0946-4

Keywords

Navigation