Advertisement

Journal of Materials Science

, Volume 52, Issue 15, pp 8886–8903 | Cite as

Copper-containing glass polyalkenoate cements based on SiO2–ZnO–CaO–SrO–P2O5 glasses: glass characterization, physical and antibacterial properties

  • S. Mokhtari
  • K. D. Skelly
  • E. A. Krull
  • A. Coughlan
  • N. P. Mellott
  • Y. Gong
  • R. Borges
  • A. W. WrenEmail author
In Honor of Larry Hench

Abstract

A series of copper (Cu)-containing glasses were synthesized and incorporated into a SiO2–ZnO–CaO–SrO–P2O5-based glass system. Additions of 6 and 12 mol% CuO retained the amorphous character, and glasses were processed to possess similar particle sizes and surface areas. Glass characterization using X-ray photoelectron spectroscopy and magic angle spinning nuclear magnetic resonance determined that the addition of 12 mol% CuO increased the fraction of Q4-speciation and the concentration of bridging oxygens. Each glass presented solubility profiles for the release of Si4+ (18–31 mg/L), Ca2+ (13–16 mg/L), Zn2+ (<3 mg/L) and Sr2+(2–10 mg/L); however, no Cu2+ or P5+ were released. Cu-GPCs were formulated, and the working time (T w) and setting times (T s) were found to be dependent on both polyacrylic acid concentration and CuO addition. The mechanical properties, i.e. the compressive strength (18–30 MPa) and the adhesive bond strength (0.79–1.32 MPa), were relative low which is likely due to the glass structure. Antibacterial properties were evaluated in E. coli (4 mm), S. epidermidis (10 mm), S. aureus (UMAS-1) and vancomycin resistant S. aureus (2 mm) and presented antibacterial effects in each microbe tested.

Keywords

Simulated Body Fluid Bioactive Glass Shear Bond Strength Glass Particle Magic Angle Spin Nuclear Magnetic Resonance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gerhardt L-C, Boccaccini AR (2010) Bioactive glass and glass-ceramic scaffolds for bone tissue engineering. Materials 3(7):3867–3910CrossRefGoogle Scholar
  2. 2.
    Hench LL (2006) The story of bioglass. J Mater Sci Mater Med 17:967–978CrossRefGoogle Scholar
  3. 3.
    Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486CrossRefGoogle Scholar
  4. 4.
    Chen X, Meng Y, Li Y, Zhao N (2008) Investigation on bio-mineralization of melt and sol–gel derived bioactive glasses. Appl Surf Sci 255(2):562–564CrossRefGoogle Scholar
  5. 5.
    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity. Biomaterials 27:2907–2915CrossRefGoogle Scholar
  6. 6.
    Bellucci D, Bolelli G, Cannillo V, Cattini A, Sola A (2011) In situ Raman spectroscopy investigation of bioactive glass reactivity: simulated body fluid solution vs TRIS-buffered solution. Mater Charact 62(10):1021–1028CrossRefGoogle Scholar
  7. 7.
    Kaur G, Pandey OP, Singh K, Homa D, Scott B, Pickrell G (2014) A review of bioactive glasses: their structure, properties, fabrication and apatite formation. J Biomed Mater Res A 102(1):254–274CrossRefGoogle Scholar
  8. 8.
    Rahaman MN, Day DE, Sonny Bal B, Fu Q, Jung SB, Bonewald LF, Tomsia AP (2011) Bioactive glass in tissue engineering. Acta Biomater 7(6):2355–2373CrossRefGoogle Scholar
  9. 9.
    Vargas GE, Mesones RV, Bretcanu O, López JMP, Boccaccini AR, Gorustovich A (2009) Biocompatibility and bone mineralization potential of 45S5 Bioglass®-derived glass-ceramic scaffolds in chick embryos. Acta Biomater 5(1):374–380CrossRefGoogle Scholar
  10. 10.
    Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422–433CrossRefGoogle Scholar
  11. 11.
    Baino F, Vitale-Brovarone C (2011) Three-dimensional glass-derived scaffolds for bone tissue engineering: current trends and forecasts for the future. J Biomed Mater Res A 97(4):514–535CrossRefGoogle Scholar
  12. 12.
    Cannillo V, Chiellini F, Fabbri P, Sola A (2010) Production of bioglass® 45S5–polycaprolactone composite scaffolds via salt-leaching. Compos Struct 92(8):1823–1832CrossRefGoogle Scholar
  13. 13.
    Chen QZ, Thompson ID, Boccaccini AR (2006) 45S5 Bioglass®-derived glass-ceramic scaffolds for bone tissue engineering. Biomaterials 27(11):2414–2425CrossRefGoogle Scholar
  14. 14.
    Chen Q-Z, Rezwan K, Françon V, Armitage D, Nazhat SN, Jones FH, Boccaccini AR (2007) Surface functionalization of bioglass®-derived porous scaffolds. Acta Biomater 3(4):551–562CrossRefGoogle Scholar
  15. 15.
    Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Raty S, Kuokkanen H, Sandor GK, Schmid C, Miettinen S, Suuronen R (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 5(8):3122–3131CrossRefGoogle Scholar
  16. 16.
    Goller G, Demirkiran H, Oktar FN, Demirkesen E (2003) Processing and characterization of bioglass reinforced hydroxyapatite composites. Ceram Int 29(6):721–724CrossRefGoogle Scholar
  17. 17.
    Habibe AF, Maeda LD, Souza RC, Barboza MJR, Daguano JKMF, Rogero SO, Santos C (2009) Effect of bioglass additions on the sintering of Y-TZP bioceramics. Mater Sci Eng C 29(6):1959–1964CrossRefGoogle Scholar
  18. 18.
    Anderson JH, Goldberg JA, Bessent RG, Kerr DJ, McKillop JH, Stewart I, Cooke TG, McArdle CS (1992) Glass yttrium-90 microspheres for patients with colorectal liver metastases. Radiother Oncol 25(2):137–139CrossRefGoogle Scholar
  19. 19.
    Bortot M, Prastalo S, Prado M (2012) Production and characterization of glass microspheres for hepatic cancer treatment. Procedia Mater Sci 1:351–358CrossRefGoogle Scholar
  20. 20.
    da Costa Guimaraes C, Moralles M, Roberto Martinelli J (2014) Monte Carlo simulation of liver cancer treatment with 166Ho-loaded glass microspheres. Radiat Phys Chem 95:185–187CrossRefGoogle Scholar
  21. 21.
    Wren AW, Cummins NM, Towler MR (2010) Comparison of antibacterial properties of commercial bone cements and fillers with a zinc-based glass polyalkenoate cement. J Mater Sci 45:5244–5251. doi: 10.1007/s10853-010-4566-5 CrossRefGoogle Scholar
  22. 22.
    Smeets R, Marx R, Kolk A, Said-Yekta S, Grosjean MB, Stoll C, Tinschert J, Wirtz DC, Riediger D, Endres K (2010) In vitro study of adhesive polymethylmethacrylate bone cement bonding to cortical bone in maxillofacial surgery. J Oral Maxillofac Surg 68(12):3028–3033CrossRefGoogle Scholar
  23. 23.
    Lewis G (1997) Properties of acrylic bone cements: state of the art review. J Biomed Mater Res 38:155–182CrossRefGoogle Scholar
  24. 24.
    Palussiere J, Berge J, Gangi A, Cotten A, Pasco A, Bertagnoli R, Jaksche H, Carpeggiani P, Deramond H (2005) Clinical results of an open prospective study of a bis-GMA composite in percutaneous vertebral augmentation. Eur Spine J 14:982–991CrossRefGoogle Scholar
  25. 25.
    Farrar DF, Rose J (2001) Rheological properties of PMMA bone cements during curing. Biomaterials 22(22):3005–3013CrossRefGoogle Scholar
  26. 26.
    Kokubo T, Kim H-M, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24:2161–2175CrossRefGoogle Scholar
  27. 27.
    Filho OP, LaTorre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30:509–514CrossRefGoogle Scholar
  28. 28.
    Hench LL (2009) Genetic design of bioactive glass. J Eur Ceram Soc 29(7):1257–1265CrossRefGoogle Scholar
  29. 29.
    Hoppe A, Guldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774CrossRefGoogle Scholar
  30. 30.
    Serra J, Gonzalez P, Liste S, Chiussi S, Leon B, Perez-amor M, Ylanen HO, Hupa M (2002) Influence of the non-bridging oxygen groups on the bioactivity of silicate glasses. J Mater Sci Mater Med 13:1221–1225CrossRefGoogle Scholar
  31. 31.
    Yamanaka H, Nakahata K, Terai R (1987) Structure of Na2O–TiO2–SiO2 glasses from the viewpoint of non-bridging oxygens measured by XPS. J Non-Cryst Solids 95 & 96:405–410CrossRefGoogle Scholar
  32. 32.
    Wren AW, Laffir FR, Kidari A, Towler MR (2011) The structural role of titanium in Ca–Sr–Zn–Si/Ti glasses for medical applications. J Non-Cryst Solids 357(3):1021–1026CrossRefGoogle Scholar
  33. 33.
    Calas G, Cormier L, Galoisy L, Jollivet P (2002) Structure–property relationships in multicomponent oxide glasses. C R Chim 5(12):831–843CrossRefGoogle Scholar
  34. 34.
    King JC (1994) Does poor zinc nutriture retard skeletal growth and mineralization in adolescents. Eur J Clin Nutr 64:375–376Google Scholar
  35. 35.
    Rico H, Villa LF (2000) Zinc, a new coherent therapy for osteoporosis. Calcif Tissue Int 67:422–423CrossRefGoogle Scholar
  36. 36.
    Yamaguchi M, Ma ZJ (2001) Role of endogenous zinc in the enhancement of bone protein synthesis associated with bone growth of newborn rats. J Bone Miner Metab 19:38–44CrossRefGoogle Scholar
  37. 37.
    Marie PJ (2007) Strontium ranelate: new insights into its dual mode of action. Bone 40(5):S5–S8CrossRefGoogle Scholar
  38. 38.
    Marie PJ (2005) Strontium ranelate; a novel mode of action optimizing bone formation and resorption. Osteopor Int 16:S7–S10CrossRefGoogle Scholar
  39. 39.
    Carter DH, Sloan P, Brook IM, Hatton PV (1997) Role of exchanged ions in the integration of ionomeric (glass polyalkenoate) bone substitutes. Biomaterials 18:459–466CrossRefGoogle Scholar
  40. 40.
    Hoang-Xuan K, Perrotte P, Dubas F, Philippon J, Poisson FM (1996) Myoclonic encephalopathy after exposure to aluminium. Lancet 347:910–911CrossRefGoogle Scholar
  41. 41.
    Polizzi S, Pira E, Ferrara M, Bugiani M, Papaleo A, Albera R, Palmi S (2002) Neurotoxic effects of aluminium among foundry workers and Alzheimers disease. Neurotoxicology 23:761–774CrossRefGoogle Scholar
  42. 42.
    Reusche E, Pilz P, Oberascher G, Linder B, Egensperger R, Gloeckner K, Trinka E, Iglseder B (2001) Subacute fatal aluminium encephalopathy after reconstructive otoneurosurgery: a case report. Hum Pathol 32(10):1136–1139CrossRefGoogle Scholar
  43. 43.
    Nicholson JW (1998) Chemistry of glass-ionomer cements: a review. Biomaterials 19:485–494CrossRefGoogle Scholar
  44. 44.
    Maurer P, Bekes K, Gernhardt CR, Schaller HG, Schubert J (2004) Comparison of the bond strength of selected adhesive dental systems to cortical bone under in vitro conditions. Int J Oral Maxillofac Surg 33(4):377–381CrossRefGoogle Scholar
  45. 45.
    Griffin S, Hill R (1998) Influence of poly(acrylic acid) molar mass on the fracture properties of glass polyalkenoate cements. J Mater Sci 33:5383–5396.doi: 10.1023/A:1004498217028 CrossRefGoogle Scholar
  46. 46.
    Kandalam U, Bouvier AJ, Casas SB, Smith RL, Gallego AM, Rothrock JK, Thompson JY, Huang CYC, Stelnicki EJ (2013) Novel bone adhesives: a comparison of bond strengths in vitro. Int J Oral Maxillofac Surg 42(9):1054–1059CrossRefGoogle Scholar
  47. 47.
    Stamboulis A, Law RV, Hill RG (2004) Characterisation of commercial ionomer glasses using magic angle nuclear magnetic resonance (MAS-NMR). Biomaterials 25(17):3907–3913CrossRefGoogle Scholar
  48. 48.
    Nicholson JW, Wilson AD (1993) Acid-base cements—their biomedical and industrial applications, vol 3. Chemistry of solid state materials. Cambridge University Press, CambridgeGoogle Scholar
  49. 49.
    Abou-Zeid YM (2012) The effect of copper oxide on the structural and some physical properties of Li2B4O7 containing Pb3O4 glasses. Mid East J Appl Sci 2(1):1–7Google Scholar
  50. 50.
    Mekki A, Holland D, McConville C (1997) X-ray photoelectron spectroscopy study of copper sodium silicate glass surfaces. J Non-Cryst Solids 215:271–282CrossRefGoogle Scholar
  51. 51.
    Chan Y-H, Huang C-F, Ou K-L, Peng P-W (2011) Mechanical properties and antibacterial activity of copper doped diamond-like carbon films. Surf Coat Eng 206(6):1037–1040CrossRefGoogle Scholar
  52. 52.
    Pramanik A, Laha D, Bhattacharya D, Pramanik P, Karmakar P (2012) A novel study of antibacterial activity of copper iodide nanoparticle mediated by DNA and membrane damage. Colloids Surf B 96:50–55CrossRefGoogle Scholar
  53. 53.
    International Organization for Standardization 9917, Dental Water Based Cements (E) (1991). Case Postale 56. Geneva, SwitzerlandGoogle Scholar
  54. 54.
    International Organization for Standardization—ISO 29022 (2013) Dentistry—adhesion—notched edge shear bond strength test EGoogle Scholar
  55. 55.
    Yatongchai C, Placek LM, Curran DJ, Towler MR, Wren AW (2015) Investigating the addition of SiO2–CaO–ZnO–Na2O–TiO2 bioactive glass to hydroxyapatite: characterization, mechanical properties and bioactivity. J Biomater Appl 30(5):495–511CrossRefGoogle Scholar
  56. 56.
    Aina V, Cerrato G, Martra G, Malavasi G, Lusvardi G, Menabue L (2013) Towards the controlled release of metal nanoparticles from biomaterials: physico-chemical, morphological and bioactivity features of Cu-containing sol–gel glasses. Appl Surf Sci 283:240–248CrossRefGoogle Scholar
  57. 57.
    Bonici A, Lusvardi G, Malavasi G, Menabue L, Piva A (2012) Synthesis and characterization of bioactive glasses functionalized with Cu nanoparticles and organic molecules. J Eur Ceram Soc 32(11):2777–2783CrossRefGoogle Scholar
  58. 58.
    Nan L, Yang K (2010) Cu ions dissolution from Cu-bearing antibacterial stainless steel. J Mater Sci Technol 26(10):941–944CrossRefGoogle Scholar
  59. 59.
    Singh S, Joshi HC, Srivastava A, Sharma A, Verma N (2014) An efficient antibacterial multi-scale web of carbon fibers with asymmetrically dispersed Ag–Cu bimetal nanoparticles. Colloid Surf A 443:311–319CrossRefGoogle Scholar
  60. 60.
    Li Y, Coughlan A, Wren AW (2014) Investigating the surface reactivity of SiO2–TiO2–CaO–Na2O/SrO bioceramics as a function of structure and incubation time in simulated body fluid. J Mater Sci Mater Med 25(8):1853–1864CrossRefGoogle Scholar
  61. 61.
    Tyas MJ, Burrow MF (2004) Adhesive restorative materials: a review. Aust Dent J 49(3):112–121CrossRefGoogle Scholar
  62. 62.
    Mitsuhashi A, Hanaoka K, Teranaka T (2003) Fracture toughness of resin modified glass ionomer restorative materials: effects of powder/liquid ratio and powder particle size reduction on fracture toughness. Dent Mater 19:747–757CrossRefGoogle Scholar
  63. 63.
    Raibee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L (2015) Effect of ion substitution on properties of bioactive glass: a review. Ceram Int 41:7241–7251CrossRefGoogle Scholar
  64. 64.
    Henderson B, Nair SP (2003) Hard labour: bacterial infection of the skeleton. Trends Microbiol 11(12):570–577CrossRefGoogle Scholar
  65. 65.
    Sterling GJ, Crawford S, Potter JH, Koerbin G, Crawford R (2003) The pharmacokinetics of simplex-tobramycin bone cement. J Bone Joint Surg 85(B):646–649Google Scholar
  66. 66.
    Witte W, Cuny C, Klare I, Nubel U, Strommenger B, Werner G (2008) Emergence and spread of antibiotic resistant gram-positive bacterial pathogens. Int J Med Microbiol 298:365–377CrossRefGoogle Scholar
  67. 67.
    Valodkar M, Modi S, Pal A, Thakore S (2011) Synthesis and antibacterial activity of Cu, Ag and Cu–Ag alloy nanoparticles: a green approach. Mater Res Bull 46(3):384–389CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • S. Mokhtari
    • 1
  • K. D. Skelly
    • 1
  • E. A. Krull
    • 2
  • A. Coughlan
    • 2
  • N. P. Mellott
    • 3
  • Y. Gong
    • 1
  • R. Borges
    • 4
  • A. W. Wren
    • 1
    Email author
  1. 1.Kazuo Inamori School of EngineeringAlfred UniversityAlfredUSA
  2. 2.Department of BioengineeringUniversity of ToledoToledoUSA
  3. 3.Department of Chemical Engineering and Materials ScienceMichigan State UniversityEast LansingUSA
  4. 4.Department of Materials Science and EngineeringUniversidade Federal do ABCSao PauloBrazil

Personalised recommendations