Advertisement

Journal of Materials Science

, Volume 52, Issue 15, pp 8904–8927 | Cite as

Sol–gel-derived manganese-releasing bioactive glass as a therapeutic approach for bone tissue engineering

  • Breno Rocha BarrioniEmail author
  • Ana Celeste Oliveira
  • Maria de Fátima Leite
  • Marivalda de Magalhães Pereira
In Honor of Larry Hench

Abstract

Sol–gel processing allows the production of bioactive glasses (BG) with flexible compositions and the incorporation of different metallic ions with therapeutic benefits into the glass network. Manganese is among several previously studied therapeutically beneficial ions and has been shown to favour osteogenic differentiation, in addition to playing an important role in cell adhesion. The incorporation of Mn into bioactive glasses for tissue engineering has been previously conducted using the conventional melting route, whereas the sol–gel route has not yet been explored. Sol–gel technology has great versatility, allowing the preparation of BG with various compositions, sizes, morphologies and a large surface area that could provide improved cellular responses and enhanced bioactivity when compared to melt-derived glasses. In this context, this work developed new compositions of sol–gel bioactive glasses (on the SiO2–P2O5–CaO–MnO system) and explored the effects of incorporating MnO on the structure, texture, in vitro bioactivity and cytocompatibility of these materials. Our results show that Mn-containing bioactive glasses present an amorphous character, high surface area and mesoporous structure. The formation of a hydroxycarbonate apatite (HCA) layer after immersion in simulated body fluid (SBF) revealed the high bioactivity of the glasses. Ion release evaluation indicated that the Si, Ca, P and Mn release levels could be adjusted within therapeutic limits, and cytotoxic analysis demonstrated that the ionic products of all samples generated a cell-friendly environment. Therefore, Mn incorporation into the bioactive glass network appears to be a potential strategy to develop superior materials with sustained ion release for tissue engineering.

Keywords

Simulated Body Fluid Bioactive Glass Amorphous Calcium Phosphate Simulated Body Fluid Solution Bioactive Glass 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors express their gratitude to Prof. Herman S. Mansur from the Center of Nanoscience, Nanotechnology and Innovation—CeNano2I/CEMUCASI/UFMG for the TG, DSC and FTIR analysis, to “LAQ—Laboratório de Análises Químicas/UFMG” for the ICP–OES analysis, and to CDTN—Centro de Desenvolvimento Tecnológico e Nuclear—for nitrogen adsorption evaluation. The authors also gratefully acknowledge financial support from CNPq, CAPES and FAPEMIG/Brazil.

Compliance with ethical standards

Conflict of interest

The authors declare that there is no personal or financial conflict of interests in the current paper.

References

  1. 1.
    Hench LL (2006) The story of bioglass. J Mater Sci Mater Med 17:967–978. doi: 10.1007/s10856-006-0432-z CrossRefGoogle Scholar
  2. 2.
    Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9:4457–4486. doi: 10.1016/j.actbio.2012.08.023 CrossRefGoogle Scholar
  3. 3.
    Ioannou AL, Kotsakis GA, Kumar T, Hinrichs JE, Romanos G (2014) Evaluation of the bone regeneration potential of bioactive glass in implant site development surgeries: a systematic review of the literature. Clin Oral Investig 19:181–191. doi: 10.1007/s00784-014-1376-1 CrossRefGoogle Scholar
  4. 4.
    de Oliveira AAR, de Carvalho BB, Mansur HS, de Magalhães Pereira M (2014) Synthesis and characterization of bioactive glass particles using an ultrasound-assisted sol–gel process: engineering the morphology and size of sonogels via a poly(ethylene glycol) dispersing agent. Mater Lett 133:44–48. doi: 10.1016/j.matlet.2014.06.092 CrossRefGoogle Scholar
  5. 5.
    Hench LL (2013) Chronology of bioactive glass development and clinical applications. New J Glass Ceram 3:67–73. doi: 10.4236/njgc.2013.32011 CrossRefGoogle Scholar
  6. 6.
    Midha S, Bo T, van den Bergh W, Lee PD, Jones JR, Mitchell CA (2013) Preconditioned 70S30C bioactive glass foams promote osteogenesis in vivo. Acta Biomater 9:9169–9182. doi: 10.1016/j.actbio.2013.07.014 CrossRefGoogle Scholar
  7. 7.
    Brauer DS (2015) Bioactive glasses-structure and properties. Angew Chem Int Ed 54:4160–4181. doi: 10.1002/anie.201405310 CrossRefGoogle Scholar
  8. 8.
    Miguez-Pacheco V, Büttner T, Maçon ALB, Jones JR, Fey T, de Ligny D, Greil P, Chevalier J, Malchere A, Boccaccini AR (2016) Development and characterization of lithium-releasing silicate bioactive glasses and their scaffolds for bone repair. J Non Cryst Solids 432:65–72. doi: 10.1016/j.jnoncrysol.2015.03.027 CrossRefGoogle Scholar
  9. 9.
    Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol-gel-derived bioactive glasses in vitro. J Biomed Mater Res 28:693–698CrossRefGoogle Scholar
  10. 10.
    Hench LL (1998) Bioceramics. J Am Ceram Soc Ceram 81:1705–1728CrossRefGoogle Scholar
  11. 11.
    Pereira MM, Clark AE, Hench LL (1995) Effect of texture on the rate of hydroxyapatite formation on gel-silica surface. J Am Ceram Soc 78:2463–2468CrossRefGoogle Scholar
  12. 12.
    Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L (2015) Effect of ion substitution on properties of bioactive glasses: a review. Ceram Int 41:7241–7251. doi: 10.1016/j.ceramint.2015.02.140 CrossRefGoogle Scholar
  13. 13.
    Sepulveda P, Jones JR, Hench L (2001) Characterization of melt-derived 45S5 and sol–gel-derived 58S bioactive glasses. J Biomed Mater Res 58:734–740. doi: 10.1002/jbm.10026 CrossRefGoogle Scholar
  14. 14.
    Lei B, Chen X, Han X, Zhou J (2012) Versatile fabrication of nanoscale sol–gel bioactive glass particles for efficient bone tissue regeneration. J Mater Chem 22:16906–16913. doi: 10.1039/c2jm31384g CrossRefGoogle Scholar
  15. 15.
    Shah FA, Brauer DS, Hill RG, Hing KA (2015) Apatite formation of bioactive glasses is enhanced by low additions of fluoride but delayed in the presence of serum proteins. Mater Lett 153:143–147. doi: 10.1016/j.matlet.2015.04.013 CrossRefGoogle Scholar
  16. 16.
    El-Fiqi A, Kim T-H, Kim M, Eltohamy M, Won J-E, Lee E-J, Kim H-W (2012) Capacity of mesoporous bioactive glass nanoparticles to deliver therapeutic molecules. Nanoscale 4:7475–7488. doi: 10.1039/c2nr31775c CrossRefGoogle Scholar
  17. 17.
    Maeno S, Niki Y, Matsumoto H, Morioka H, Yatabe T, Funayama A, Toyama Y, Taguchi T, Tanaka J (2005) The effect of calcium ion concentration on osteoblast viability, proliferation and differentiation in monolayer and 3D culture. Biomaterials 26:4847–4855. doi: 10.1016/j.biomaterials.2005.01.006 CrossRefGoogle Scholar
  18. 18.
    Gentleman E, Fredholm YC, Jell G, Lotfibakhshaiesh N, O’Donnell MD, Hill RG, Stevens MM (2010) The effects of strontium-substituted bioactive glasses on osteoblasts and osteoclasts in vitro. Biomaterials 31:3949–3956. doi: 10.1016/j.biomaterials.2010.01.121 CrossRefGoogle Scholar
  19. 19.
    Diba M, Tapia F, Boccaccini AR, Strobel LA (2012) Magnesium-containing bioactive glasses for biomedical applications. Int J Appl Glass Sci 3:221–253. doi: 10.1111/j.2041-1294.2012.00095.x CrossRefGoogle Scholar
  20. 20.
    Balamurugan A, Balossier G, Laurent-Maquin D, Pina S, Rebelo AHS, Faure J, Ferreira JMF (2008) An in vitro biological and anti-bacterial study on a sol-gel derived silver-incorporated bioglass system. Dent Mater 24:1343–1351. doi: 10.1016/j.dental.2008.02.015 CrossRefGoogle Scholar
  21. 21.
    Shruti S, Salinas AJ, Malavasi G, Lusvardi G, Menabue L, Ferrara C, Mustarelli P, Vallet-Regì M (2012) Structural and in vitro study of cerium, gallium and zinc containing sol–gel bioactive glasses. J Mater Chem 22:13698–13706. doi: 10.1039/c2jm31767b CrossRefGoogle Scholar
  22. 22.
    Mourino V, Cattalini JP, Boccaccini AR (2012) Metallic ions as therapeutic agents in tissue engineering scaffolds: an overview of their biological applications and strategies for new developments. J R Soc Interface 9:401–419. doi: 10.1098/rsif.2011.0611 CrossRefGoogle Scholar
  23. 23.
    Lüthen F, Bulnheim U, Müller PD, Rychly J, Jesswein H, Nebe JGB (2007) Influence of manganese ions on cellular behavior of human osteoblasts in vitro. Biomol Eng 24:531–536. doi: 10.1016/j.bioeng.2007.08.003 CrossRefGoogle Scholar
  24. 24.
    Torres PMC, Vieira SI, Cerqueira AR, Pina S, da Cruz Silva OAB, Abrantes JCC, Ferreira JMF (2014) Effects of Mn-doping on the structure and biological properties of β-tricalcium phosphate. J Inorg Biochem 136:57–66. doi: 10.1016/j.jinorgbio.2014.03.013 CrossRefGoogle Scholar
  25. 25.
    Fujitani W, Hamada Y, Kawaguchi N, Mori S, Daito K, Uchinaka A, Matsumoto T, Kojima Y, Daito M, Nakano T, Matsuura N (2010) Synthesis of hydroxyapatite contining manganese and its evaluation of biocompatibility. Nano Biomed 2:37–46Google Scholar
  26. 26.
    Sopyan I, Ramesh S, Nawawi NA, Tampieri A, Sprio S (2011) Effects of manganese doping on properties of sol–gel derived biphasic calcium phosphate ceramics. Ceram Int 37:3703–3715. doi: 10.1016/j.ceramint.2011.06.033 CrossRefGoogle Scholar
  27. 27.
    Miola M, Brovarone CV, Maina G, Rossi F, Bergandi L, Ghigo D, Saracino S, Maggiora M, Canuto RA, Muzio G, Vernè E (2014) In vitro study of manganese-doped bioactive glasses for bone regeneration. Mater Sci Eng C 38:107–118. doi: 10.1016/j.msec.2014.01.045 CrossRefGoogle Scholar
  28. 28.
    Srivastava AK, Pyare R, Singh SP (2012) In vitro bioactivity and physical–mechanical properties of MnO2 substituted 45S5 bioactive glasses and glass–ceramics. J Biomater Tissue Eng 2:249–258. doi: 10.1166/jbt.2012.1043 CrossRefGoogle Scholar
  29. 29.
    Wallace KE, Hill RG, Pembroke JT, Brown CJ, Hatton PV (1999) Influence of sodium oxide content on bioactive glass properties. J Mater Sci Mater Med 10:697–701. doi: 10.1023/A:1008910718446 CrossRefGoogle Scholar
  30. 30.
    de Oliveira AAR, de Souza DA, Dias LLS, de Carvalho SM, Mansur HS, de Magalhães Pereira M (2013) Synthesis, characterization and cytocompatibility of spherical bioactive glass nanoparticles for potential hard tissue engineering applications. Biomed Mater 8:025011. doi: 10.1088/1748-6041/8/2/025011
  31. 31.
    de Barros Coelho M, Magalhães Pereira M (2005) Sol–gel synthesis of bioactive glass scaffolds for tissue engineering: effect of surfactant type and concentration. J Biomed Mater Res B Appl Biomater 75:451–456. doi: 10.1002/jbm.b.30354 CrossRefGoogle Scholar
  32. 32.
    Barrett EP, Joyner LG, Halenda PP (1951) The determination of pore volume and area distributions in porous substances. I. Computations from nitrogen isotherms. J Am Chem Soc 73:373–380. doi: 10.1021/ja01145a126 CrossRefGoogle Scholar
  33. 33.
    Coleman NJ, Hench LL (2000) A gel-derived mesoporous silica reference material for surface analysis by gas sorption 1. Textural features. Ceram Int 26:171–178. doi: 10.1016/S0272-8842(99)00037-1 CrossRefGoogle Scholar
  34. 34.
    Kokubo T (1991) Bioactive glass ceramics: properties and applications. Biomaterials 12:155–163. doi: 10.1016/0142-9612(91)90194-F CrossRefGoogle Scholar
  35. 35.
    Maçon ALB, Kim TB, Valliant EM, Goetschius K, Brow RK, Day DE, Hoppe A, Boccaccini AR, Kim IY, Ohtsuki C, Kokubo T, Osaka A, Vallet-Regí M, Arcos D, Fraile L, Salinas AJ, Teixeira AV, Vueva Y, Almeida RM, Miola M, Vitale-Brovarone C, Verné E, Höland W, Jones JR (2015) A unified in vitro evaluation for apatite-forming ability of bioactive glasses and their variants. J Mater Sci Mater Med 26:1–10. doi: 10.1007/s10856-015-5403-9 CrossRefGoogle Scholar
  36. 36.
    Valerio P, Pereira MM, Goes AM, Leite MF (2004) The effect of ionic products from bioactive glass dissolution on osteoblast proliferation and collagen production. Biomaterials 25:2941–2948. doi: 10.1016/j.biomaterials.2003.09.086 CrossRefGoogle Scholar
  37. 37.
    Huang K, Cai S, Xu G, Ren M, Wang X, Zhang R, Niu S, Zhao H (2014) Sol–gel derived mesoporous 58S bioactive glass coatings on AZ31 magnesium alloy and in vitro degradation behavior. Surf Coat Technol 240:137–144. doi: 10.1016/j.surfcoat.2013.12.026 CrossRefGoogle Scholar
  38. 38.
    Saboori A, Rabiee M, Moztarzadeh F, Sheikhi M, Tahriri M, Karimi M (2009) Synthesis, characterization and in vitro bioactivity of sol-gel-derived SiO2–CaO-P2O5–MgO bioglass. Mater Sci Eng C 29:335–340. doi: 10.1016/j.msec.2008.07.004 CrossRefGoogle Scholar
  39. 39.
    El-Kady AM, Ali AF (2012) Fabrication and characterization of ZnO modified bioactive glass nanoparticles. Ceram Int 38:1195–1204. doi: 10.1016/j.ceramint.2011.07.069 CrossRefGoogle Scholar
  40. 40.
    Oki A, Parveen B, Hossain S, Adeniji S, Donahue H (2004) Preparation and in vitro bioactivity of zinc containing sol–gel-derived bioglass materials. J Biomed Mater Res A 69:216–221. doi: 10.1002/jbm.a.20070 CrossRefGoogle Scholar
  41. 41.
    Siqueira RL, Zanotto ED (2013) The influence of phosphorus precursors on the synthesis and bioactivity of SiO2–CaO-P2O5 sol–gel glasses and glass–ceramics. J Mater Sci Mater Med 24:365–379. doi: 10.1007/s10856-012-4797-x CrossRefGoogle Scholar
  42. 42.
    Gu Y, Wang G, Zhang X, Zhang Y, Zhang C, Liu X, Rahaman MN, Huang W, Pan H (2014) Biodegradable borosilicate bioactive glass scaffolds with a trabecular microstructure for bone repair. Mater Sci Eng C 36:294–300. doi: 10.1016/j.msec.2013.12.023 CrossRefGoogle Scholar
  43. 43.
    Pirayesh H, Nychka JA (2013) Sol–gel synthesis of bioactive glass-ceramic 45S5 and its in vitro dissolution and mineralization behavior. J Am Ceram Soc 96:1643–1650. doi: 10.1111/jace.12190 CrossRefGoogle Scholar
  44. 44.
    Catauro M, Bollino F, Papale F, Ciprioti SV (2015) Investigation on bioactivity, biocompatibility, thermal behavior and antibacterial properties of calcium silicate glass coatings containing Ag. J Non Cryst Solids 422:16–22. doi: 10.1016/j.jnoncrysol.2015.04.037 CrossRefGoogle Scholar
  45. 45.
    Montazerian M, Schneider JF, Yekta BE, Marghussian VK, Rodrigues AM, Zanotto ED (2015) Sol–gel synthesis, structure, sintering and properties of bioactive and inert nano-apatite–zirconia glass–ceramics. Ceram Int 41:11024–11045. doi: 10.1016/j.ceramint.2015.05.047 CrossRefGoogle Scholar
  46. 46.
    Hoppe A, Jokic B, Janackovic D, Fey T, Greil P, Romeis S, Schmidt J, Peukert W, Lao J, Jallot E, Boccaccini AR (2014) Cobalt-releasing 1393 bioactive glass-derived scaffolds for bone tissue engineering applications. ACS Appl Mater Interfaces 6:2865–2877. doi: 10.1021/am405354y CrossRefGoogle Scholar
  47. 47.
    Fredholm YC, Karpukhina N, Law RV, Hill RG (2010) Strontium containing bioactive glasses: glass structure and physical properties. J Non Cryst Solids 356:2546–2551. doi: 10.1016/j.jnoncrysol.2010.06.078 CrossRefGoogle Scholar
  48. 48.
    O’Donnell MD, Hill RG (2010) Influence of strontium and the importance of glass chemistry and structure when designing bioactive glasses for bone regeneration. Acta Biomater 6:2382–2385. doi: 10.1016/j.actbio.2010.01.006 CrossRefGoogle Scholar
  49. 49.
    Yu B, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME, Jones JR (2012) Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28:17465–17476. doi: 10.1021/la303768b CrossRefGoogle Scholar
  50. 50.
    Ma J, Chen CZ, Wang DG, Meng XG, Shi JZ (2010) Influence of the sintering temperature on the structural feature and bioactivity of sol–gel derived SiO2–CaO–P2O5 bioglass. Ceram Int 36:1911–1916. doi: 10.1016/j.ceramint.2010.03.017 CrossRefGoogle Scholar
  51. 51.
    Labbaf S, Tsigkou O, Müller KH, Stevens MM, Porter AE, Jones JR (2011) Spherical bioactive glass particles and their interaction with human mesenchymal stem cells in vitro. Biomaterials 32:1010–1018. doi: 10.1016/j.biomaterials.2010.08.082 CrossRefGoogle Scholar
  52. 52.
    Agathopoulos S, Tulyaganov DU, Ventura JMG, Kannan S, Saranti A, Karakassides MA, Ferreira JMF (2006) Structural analysis and devitrification of glasses based on the CaO–MgO–SiO2 system with B2O3, Na2O, CaF2 and P2O5 additives. J Non Cryst Solids 352:322–328. doi: 10.1016/j.jnoncrysol.2005.12.003 CrossRefGoogle Scholar
  53. 53.
    Daguano JKMF, Suzuki PA, Strecker K, Oliveira JMM, Fernandes MHFV, Santos C (2013) Development and characterization of 3CaO·P2O5–SiO2–MgO glass–ceramics with different crystallization degree. J Adv Ceram 2:378–388. doi: 10.1007/s40145-013-0086-5 CrossRefGoogle Scholar
  54. 54.
    Zhao S, Li Y, Li D (2010) Synthesis and in vitro bioactivity of CaO–SiO2–P2O5 mesoporous microspheres. Microporous Mesoporous Mater 135:67–73. doi: 10.1016/j.micromeso.2010.06.012 CrossRefGoogle Scholar
  55. 55.
    Combes C, Rey C (2010) Amorphous calcium phosphates: synthesis, properties and uses in biomaterials. Acta Biomater 6:3362–3378. doi: 10.1016/j.actbio.2010.02.017 CrossRefGoogle Scholar
  56. 56.
    Padilla S, Román J, Sánchez-Salcedo S, Vallet-Regí M (2006) Hydroxyapatite/SiO2–CaO–P2O5 glass materials: in vitro bioactivity and biocompatibility. Acta Biomater 2:331–342. doi: 10.1016/j.actbio.2006.01.006 CrossRefGoogle Scholar
  57. 57.
    Vallet-Regí M, Izquierdo-Barba I, Salinas AJ (1999) Influence of P2O5 on crystallinity of apatite formed in vitro on surface of bioactive glasses. J Biomed Mater Res 46:560–565. doi: 10.1002/(SICI)1097-4636(19990915)46:4<560:AID-JBM14>3.0.CO;2-M CrossRefGoogle Scholar
  58. 58.
    Yu B, Poologasundarampillai G, Turdean-Ionescu C, Smith ME, Jones JR (2011) A new calcium source for bioactive sol–gel hybrids. Bioceram Dev Appl 1:1–3. doi: 10.4303/bda/D110178 CrossRefGoogle Scholar
  59. 59.
    Vallet-Regí M, Ragel CV, Salinas AJ (2003) Glasses with medical applications. Eur J Inorg Chem 2003:1029–1042. doi: 10.1002/ejic.200390134 CrossRefGoogle Scholar
  60. 60.
    Balamurugan A, Sockalingum G, Michel J, Fauré J, Banchet V, Wortham L, Bouthors S, Laurent-Maquin D, Balossier G (2006) Synthesis and characterisation of sol gel derived bioactive glass for biomedical applications. Mater Lett 60:3752–3757. doi: 10.1016/j.matlet.2006.03.102 CrossRefGoogle Scholar
  61. 61.
    Tulyaganov DU, Reddy AA, Siegel R, Ionescu E, Riedel R, Ferreira JMF (2015) Synthesis and in vitro bioactivity assessment of injectable bioglass-organic pastes for bone tissue repair. Ceram Int 41:9373–9382. doi: 10.1016/j.ceramint.2015.03.312 CrossRefGoogle Scholar
  62. 62.
    Lusvardi G, Malavasi G, Menabue L, Aina V, Morterra C (2009) Fluoride-containing bioactive glasses: surface reactivity in simulated body fluids solutions. Acta Biomater 5:3548–3562. doi: 10.1016/j.actbio.2009.06.009 CrossRefGoogle Scholar
  63. 63.
    Hasan MS, Werner-Zwanziger U, Boyd D (2015) Composition-structure-properties relationship of strontium borate glasses for medical applications. J Biomed Mater Res A 103:2344–2354. doi: 10.1002/jbm.a.35361 CrossRefGoogle Scholar
  64. 64.
    Valliant EM, Turdean-Ionescu CA, Hanna JV, Smith ME, Jones JR (2012) Role of pH and temperature on silica network formation and calcium incorporation into sol–gel derived bioactive glasses. J Mater Chem 22:1613–1619. doi: 10.1039/c1jm13225c CrossRefGoogle Scholar
  65. 65.
    Thommes M (2010) Physical adsorption characterization of nanoporous materials. Chem Ing Tech 82:1059–1073. doi: 10.1002/cite.201000064 CrossRefGoogle Scholar
  66. 66.
    Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19:1276–1282. doi: 10.1039/b814292k CrossRefGoogle Scholar
  67. 67.
    Vallet-Regí M, Salinas AJ, Román J, Gil M (1999) Effect of magnesium content on the in vitro bioactivity of CaO–MgO–SiO2–P2O5 sol–gel glasses. J Mater Chem 9:515–518. doi: 10.1039/a808679f CrossRefGoogle Scholar
  68. 68.
    Juhasz JA, Best SM (2012) Bioactive ceramics: processing, structures and properties. J Mater Sci 47:610–624. doi: 10.1007/s10853-011-6063-x CrossRefGoogle Scholar
  69. 69.
    Sing KSW (1984) Reporting physisorption data for gas, solid systems with special reference to the determination of surface area and porosity (Recommendations, 1984). Pure Appl Chem 57(1985):603–619. doi: 10.1351/pac198557040603 Google Scholar
  70. 70.
    Jones JR, Ehrenfried LM, Hench LL (2006) Optimising bioactive glass scaffolds for bone tissue engineering. Biomaterials 27:964–973. doi: 10.1016/j.biomaterials.2005.07.017 CrossRefGoogle Scholar
  71. 71.
    Atkinson I, Anghel EM, Predoana L, Mocioiu OC, Jecu L, Raut I, Munteanu C, Culita D, Zaharescu M (2016) Influence of ZnO addition on the structural, in vitro behavior and antimicrobial activity of sol–gel derived CaO–P2O5–SiO2 bioactive glasses. Ceram Int 42:3033–3045. doi: 10.1016/j.ceramint.2015.10.090 CrossRefGoogle Scholar
  72. 72.
    Hu Q, Li Y, Zhao N, Ning C, Chen X (2014) Facile synthesis of hollow mesoporous bioactive glass sub-micron spheres with a tunable cavity size. Mater Lett 134:130–133. doi: 10.1016/j.matlet.2014.07.041 CrossRefGoogle Scholar
  73. 73.
    Gunawidjaja PN, Mathew R, Lo AYH, Izquierdo-Barba I, Garcia A, Arcos D, Vallet-Regi M, Eden M (2012) Local structures of mesoporous bioactive glasses and their surface alterations in vitro: inferences from solid-state nuclear magnetic resonance. Philos Trans R Soc A Math Phys Eng Sci 370:1376–1399. doi: 10.1098/rsta.2011.0257 CrossRefGoogle Scholar
  74. 74.
    Zhao S, Zhang J, Zhu M, Zhang Y, Liu Z, Ma Y, Zhu Y, Zhang C (2015) Effects of functional groups on the structure, physicochemical and biological properties of mesoporous bioactive glass scaffolds. J Mater Chem B 3:1612–1623. doi: 10.1039/C4TB01287A CrossRefGoogle Scholar
  75. 75.
    Pereira MM, Hench LL (1996) Mechanisms of hydroxyapatite formation on porous gel-silica substrates. J Sol Gel Sci Technol 7:59–68. doi: 10.1007/BF00401884 CrossRefGoogle Scholar
  76. 76.
    Moreira CDF, Carvalho SM, Mansur HS, Pereira MM (2016) Thermogelling chitosan–collagen–bioactive glass nanoparticle hybrids as potential injectable systems for tissue engineering. Mater Sci Eng C 58:1207–1216. doi: 10.1016/j.msec.2015.09.075 CrossRefGoogle Scholar
  77. 77.
    Lusvardi G, Malavasi G, Menabue L, Shruti S (2013) Gallium-containing phosphosilicate glasses: functionalization and in vitro bioactivity. Mater Sci Eng C 33:3190–3196. doi: 10.1016/j.msec.2013.03.046 CrossRefGoogle Scholar
  78. 78.
    Serra J, González P, Liste S, Serra C, Chiussi S, León B, Pérez-Amor M, Ylänen HO, Hupa M (2003) FTIR and XPS studies of bioactive silica based glasses. J Non Cryst Solids 332:20–27. doi: 10.1016/j.jnoncrysol.2003.09.013 CrossRefGoogle Scholar
  79. 79.
    Paluszkiewicz C, Ślósarczyk A, Pijocha D, Sitarz M, Bućko M, Zima A, Chróścicka A, Lewandowska-Szumieł M (2010) Synthesis, structural properties and thermal stability of Mn-doped hydroxyapatite. J Mol Struct 976:301–309. doi: 10.1016/j.molstruc.2010.04.001 CrossRefGoogle Scholar
  80. 80.
    Medvecký Ľ, Štulajterová R, Parilák Ľ, Trpčevská J, Ďurišin J, Barinov SM (2006) Influence of manganese on stability and particle growth of hydroxyapatite in simulated body fluid. Colloids Surf A Phys Eng Asp 281:221–229. doi: 10.1016/j.colsurfa.2006.02.042 CrossRefGoogle Scholar
  81. 81.
    Li Y, Nam CT, Ooi CP (2009) Iron(III) and manganese(II) substituted hydroxyapatite nanoparticles: characterization and cytotoxicity analysis. J Phys Conf Ser 187:012024. doi: 10.1088/1742-6596/187/1/012024
  82. 82.
    Haimi S, Gorianc G, Moimas L, Lindroos B, Huhtala H, Räty S, Kuokkanen H, Sándor GK, Schmid C, Miettinen S, Suuronen R (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 5:3122–3131. doi: 10.1016/j.actbio.2009.04.006 CrossRefGoogle Scholar
  83. 83.
    Marsich L, Moimas L, Sergo V, Schmid C (2009) Raman spectroscopic study of bioactive silica-based glasses: the role of the alkali/alkali earth ratio on the non-bridging oxygen/bridging oxygen (NBO/BO) ratio. Spectroscopy 23:227–232. doi: 10.3233/SPE-2009-0380 CrossRefGoogle Scholar
  84. 84.
    Sharma K, Kedia S, Singh AK, Basak CB, Chauhan AK, Basu S, Sinha S (2016) Morphology and structural studies of laser treated 45S5 bioactive glass. J Non Cryst Solids 440:43–48. doi: 10.1016/j.jnoncrysol.2016.02.012 CrossRefGoogle Scholar
  85. 85.
    Morikawa H, Lee S, Kasuga T, Brauer DS (2013) Effects of magnesium for calcium substitution in P2O5–CaO–TiO2 glasses. J Non Cryst Solids 380:53–59. doi: 10.1016/j.jnoncrysol.2013.08.029 CrossRefGoogle Scholar
  86. 86.
    Valappil SP, Ready D, Abou Neel EA, Pickup DM, Chrzanowski W, O’Dell LA, Newport RJ, Smith ME, Wilson M, Knowles JC (2008) Antimicrobial gallium-doped phosphate-based glasses. Adv Funct Mater 18:732–741. doi: 10.1002/adfm.200700931 CrossRefGoogle Scholar
  87. 87.
    Anand V, Singh KJ, Kaur K (2014) Evaluation of zinc and magnesium doped 45S5 mesoporous bioactive glass system for the growth of hydroxyl apatite layer. J Non Cryst Solids 406:88–94. doi: 10.1016/j.jnoncrysol.2014.09.050 CrossRefGoogle Scholar
  88. 88.
    Pascuta P, Borodi G, Jumate N, Vida-Simiti I, Viorel D, Culea E (2010) The structural role of manganese ions in some zinc phosphate glasses and glass ceramics. J Alloy Compd 504:479–483. doi: 10.1016/j.jallcom.2010.05.147 CrossRefGoogle Scholar
  89. 89.
    Gaddam A, Fernandes HR, Tulyaganov DU, Pascual MJ, Ferreira JMF (2014) Role of manganese on the structure, crystallization and sintering of non-stoichiometric lithium disilicate glasses. RSC Adv 4:13581–13592. doi: 10.1039/c3ra46393a CrossRefGoogle Scholar
  90. 90.
    Wang H, Zhao S, Xiao W, Xue J, Shen Y, Zhou J, Huang W, Rahaman MN, Zhang C, Wang D (2016) Influence of Cu doping in borosilicate bioactive glass and the properties of its derived scaffolds. Mater Sci Eng C 58:194–203. doi: 10.1016/j.msec.2015.08.027 CrossRefGoogle Scholar
  91. 91.
    Omar S, Repp F, Desimone PM, Weinkamer R, Wagermaier W, Ceré S, Ballarre J (2015) Sol–gel hybrid coatings with strontium-doped 45S5 glass particles for enhancing the performance of stainless steel implants: electrochemical, bioactive and in vivo response. J Non Cryst Solids 425:1–10. doi: 10.1016/j.jnoncrysol.2015.05.024 CrossRefGoogle Scholar
  92. 92.
    Balamurugan A, Balossier G, Kannan S, Michel J, Rebelo AHS, Ferreira JMF (2007) Development and in vitro characterization of sol–gel derived CaO-P2O5-SiO2-ZnO bioglass. Acta Biomater 3:255–262. doi: 10.1016/j.actbio.2006.09.005 CrossRefGoogle Scholar
  93. 93.
    Julien CM, Massot M, Poinsignon C (2004) Lattice vibrations of manganese oxides: part I. Periodic structures. Spectrochim Acta A Mol Biomol Spectrosc 60:689–700. doi: 10.1016/S1386-1425(03)00279-8 CrossRefGoogle Scholar
  94. 94.
    Mironova-Ulmane N, Kuzmin A, Grube M (2009) Raman and infrared spectromicroscopy of manganese oxides. J Alloy Compd 480:97–99. doi: 10.1016/j.jallcom.2008.10.056 CrossRefGoogle Scholar
  95. 95.
    Shruti S, Salinas AJ, Ferrari E, Malavasi G, Lusvardi G, Doadrio AL, Menabue L, Vallet-Regi M (2013) Curcumin release from cerium, gallium and zinc containing mesoporous bioactive glasses. Microporous Mesoporous Mater 180:92–101. doi: 10.1016/j.micromeso.2013.06.014 CrossRefGoogle Scholar
  96. 96.
    Bejarano J, Caviedes P, Palza H (2015) Sol–gel synthesis and in vitro bioactivity of copper and zinc-doped silicate bioactive glasses and glass–ceramics. Biomed Mater 10:025001. doi: 10.1088/1748-6041/10/2/025001
  97. 97.
    Notingher I, Jones JR, Verrier S, Bisson I, Embanga P, Edwards P, Polak JM, Hench LL (2003) Application of FTIR and Raman spectroscopy to characterisation of bioactive materials and living cells. Spectrosc Int J 17:275–288. doi: 10.1155/2003/893584 CrossRefGoogle Scholar
  98. 98.
    Salinas AJ, Shruti S, Malavasi G, Menabue L, Vallet-Regí M (2011) Substitutions of cerium, gallium and zinc in ordered mesoporous bioactive glasses. Acta Biomater 7:3452–3458. doi: 10.1016/j.actbio.2011.05.033 CrossRefGoogle Scholar
  99. 99.
    Mozafari M, Moztarzadeh F, Rabiee M, Azami M, Maleknia S, Tahriri M, Moztarzadeh Z, Nezafati N (2010) Development of macroporous nanocomposite scaffolds of gelatin/bioactive glass prepared through layer solvent casting combined with lamination technique for bone tissue engineering. Ceram Int 36:2431–2439. doi: 10.1016/j.ceramint.2010.07.010 CrossRefGoogle Scholar
  100. 100.
    Mozafari M, Moztarzadeh F (2014) Synthesis, characterization and biocompatibility evaluation of sol–gel derived bioactive glass scaffolds prepared by freeze casting method. Ceram Int 40:5349–5355. doi: 10.1016/j.ceramint.2013.10.115 CrossRefGoogle Scholar
  101. 101.
    Goel A, Rajagopal RR, Ferreira JMF (2011) Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomater 7:4071–4080. doi: 10.1016/j.actbio.2011.06.047 CrossRefGoogle Scholar
  102. 102.
    Christodoulou I, Buttery LDK, Saravanapavan P, Tai G, Hench LL, Polak JM (2005) Dose- and time-dependent effect of bioactive gel-glass ionic-dissolution products on human fetal osteoblast-specific gene expression. J Biomed Mater Res B Appl Biomater 74:529–537. doi: 10.1002/jbm.b.30249 CrossRefGoogle Scholar
  103. 103.
    Murphy S, Boyd D, Moane S, Bennett M (2009) The effect of composition on ion release from Ca–Sr–Na–Zn–Si glass bone grafts. J Mater Sci Mater Med 20:2207–2214. doi: 10.1007/s10856-009-3789-y CrossRefGoogle Scholar
  104. 104.
    Azevedo M, Jell G, O’Donnell M, Law R, Hill R, Stevens M (2010) Synthesis and characterization of hypoxia-mimicking bioactive glasses for skeletal regeneration. J Mater Chem 20:8854–8864. doi: 10.1039/c0jm01111h CrossRefGoogle Scholar
  105. 105.
    Sakai T, Takeda S, Nakamura M (2002) The effects of particulate metals on cell viability of osteoblast-like cells in vitro. Dent Mater J 21:133–46. http://www.ncbi.nlm.nih.gov/pubmed/12238782
  106. 106.
    Srivastava S, Kumar N (2013) Role of vanadium (V) in the differentiation of C3H10t1/2 cells towards osteoblast lineage: a comparative analysis with other trace elements. Biol Trace Elem Res 152:135–142. doi: 10.1007/s12011-013-9602-2 CrossRefGoogle Scholar
  107. 107.
    Yu C, Zhou Z, Wang J, Sun J, Liu W, Sun Y, Kong B, Yang H, Yang S (2015) In depth analysis of apoptosis induced by silica coated manganese oxide nanoparticles in vitro. J Hazard Mater 283:519–528. doi: 10.1016/j.jhazmat.2014.09.060 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Breno Rocha Barrioni
    • 1
    Email author
  • Ana Celeste Oliveira
    • 1
    • 2
  • Maria de Fátima Leite
    • 2
  • Marivalda de Magalhães Pereira
    • 1
  1. 1.Department of Metallurgical Engineering and Materials, School of EngineeringFederal University of Minas GeraisBelo HorizonteBrazil
  2. 2.Department of Physiology and Biophysics, ICBFederal University of Minas GeraisBelo HorizonteBrazil

Personalised recommendations