Skip to main content
Log in

Experimental characterization of short flax fiber mat composites: tensile and flexural properties and damage analysis using acoustic emission

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, tensile and flexural tests are realized on composites reinforced with short flax fibers mats produced by a papermaking process. Plates are molded with different fiber volume contents (V f), and to support the analysis, acoustic emission (AE) is coupled to test samples to follow the evolution of different damage modes using a multivariable analysis to classify the acoustic events. It is shown that the tensile and flexural properties increase with V f up to a critical value of about 40%, above which they start to decrease. The contribution of each damage mode in the global failure of the composites is calculated, and their effect in the evolution of mechanical properties is discussed. The results show that compared to the tensile tests, AE events of flexural tests appear at much higher strains, with considerably lower cumulated energies, reflecting the low level of AE events attributed to matrix microcracking. The AE analysis also reveals a clear domination of fiber–matrix friction and fiber pullout mode of fracture, raising the importance of the adhesion of flax fibers–epoxy matrix. The decrease in Young’s modulus and strength at V f above 40% is in a large measure explained by a poor fiber–matrix adhesion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Al-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354

    Article  Google Scholar 

  2. Kalia S, Avérous L, Njuguna JA, Cherian BM, Dufresne A (2011) Natural fibers, bio-and nanocomposites. Int J Polym Sci 2:1–2

    Google Scholar 

  3. Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Compos Part B Eng 56:296–317

    Article  Google Scholar 

  4. Kandare E, Luangtriratana P, Kandola BK (2014) Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection. Compos Part B Eng 56:602–610

    Article  Google Scholar 

  5. Pil L, Bensadoun F, Pariset J, Verpoest I (2016) Why are designers fascinated by flax and hemp fibre composites? Compos Part A Appl Sci Manuf 83:193–205

    Article  Google Scholar 

  6. Liu Q, Hughes M (2008) The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Compos Part A Appl Sci Manuf 39:1644–1652

    Article  Google Scholar 

  7. Liang S, Gning PB, Guillaumat L (2014) Properties evolution of flax/epoxy composites under fatigue loading. Int J Fatigue 63:36–45

    Article  Google Scholar 

  8. Le Duigou A, Kervoelen A, Le Grand A, Nardin M, Baley C (2014) Interfacial properties of flax fibre–epoxy resin systems: existence of a complex interphase. Compos Sci Technol 100:152–157

    Article  Google Scholar 

  9. Liang S, Gning PB, Guillaumat L (2012) A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Compos Sci Technol 72:535–543

    Article  Google Scholar 

  10. Cuinat-Guerraz N, Dumont MJ, Hubert P (2016) Environmental resistance of flax/bio-based epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Compos Part A Appl Sci Manuf 88:140–147

    Article  Google Scholar 

  11. Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Comp 20:621–627

    Article  Google Scholar 

  12. Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246

    Article  Google Scholar 

  13. Hughes M, Carpenter J, Hill C (2007) Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. J Mater Sci 42(7):2499–2511. doi:10.1007/s10853-006-1027

    Article  Google Scholar 

  14. Phillips S, Baets J, Lessard L, Hubert P, Verpoest I (2013) Characterization of flax/epoxy prepregs before and after cure. J Reinf Plast Comp 32(11):777–785

    Article  Google Scholar 

  15. Mittal V, Saini R, Sinha S (2016) Natural fiber-mediated epoxy composites—a review. Compos Part B Eng 99:425–435

    Article  Google Scholar 

  16. Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112

    Article  Google Scholar 

  17. Morrison Iii WH, Archibald DD, Sharma HSS, Akin DE (2000) Chemical and physical characterization of water- and dew-retted flax fibers. Ind Crop Prod 12:39–46

    Article  Google Scholar 

  18. Zhu J, Zhu H, Immonen K, Brighton J, Abhyankar H (2015) Improving mechanical properties of novel flax/tannin composites through different chemical treatments. Ind Crop Prod 67:346–354

    Article  Google Scholar 

  19. Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819

    Article  Google Scholar 

  20. Alix S, Philippe E, Bessadok A, Lebrun L, Morvan C, Marais S (2009) Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresour Technol 100:4742–4749

    Article  Google Scholar 

  21. Mizutani Y, Nagashima K, Takemoto M, Ono K (2000) Fracture mechanism characterization of cross-ply carbon–fiber composites using acoustic emission analysis. NDT&E Int 33:101–110

    Article  Google Scholar 

  22. McCrory JP, Al-Jumaili SK, Crivelli D, Pearson MR, Eaton MJ, Featherston CA, Guiagliano M, Holford KM, Pullin R (2015) Damage classification in carbon fibre composites using acoustic emission: a comparison of three techniques. Compos Part B Eng 68:424–430

    Article  Google Scholar 

  23. Liu P, Chu J, Liu Y, Zheng J (2012) A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Mater Des 37:228–235

    Article  Google Scholar 

  24. Njuhovic E, Bräu M, Wolff-Fabris F, Starzynski K, Altstädt V (2015) Identification of failure mechanisms of metallised glass fibre reinforced composites under tensile loading using acoustic emission analysis. Compos Part B Eng 81:1–13

    Article  Google Scholar 

  25. Suresh Kumar C, Arumugam V, Sengottuvelusamy R, Srinivasan S, Dhakal HN (2017) Failure strength prediction of glass/epoxy composite laminates from acoustic emission parameters using artificial neural network. Appl Acoust 115:32–41

    Article  Google Scholar 

  26. De Rosa IM, Santulli C, Sarasini F (2009) Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: a literature review. Compos Part A Appl Sci Manuf 40:1456–1469

    Article  Google Scholar 

  27. Aslan M (2013) Investigation of damage mechanism of flax fibre LPET commingled composites by acoustic emission. Compos Part B Eng 54:289–297

    Article  Google Scholar 

  28. Assarar M, Scida D, El Mahi A, Poilâne C, Ayad R (2011) Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: flax–fibres and glass–fibres. Mater Des 32:788–795

    Article  Google Scholar 

  29. Monti A, El Mahi A, Jendli Z, Guillaumat L (2016) Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission. Compos Part A Appl Sci Manuf 90:100–110

    Article  Google Scholar 

  30. Assarar M, Scida D, Zouari W, Saidane EH, Ayad R (2014) Acoustic emission characterization of damage in short hemp–fiber reinforced polypropylene composites. Polym Compos 37(4):1101–1112

    Article  Google Scholar 

  31. El Mahi A, Salem IB, Assarar M, Berbaoui R, Poilane C, El Guerjouma R (2010) Analyse par émission acoustique de l’endommagement des matériaux éco-composites. In: 10ème Congrès Français d’Acoustique, Lyon, France

  32. Romhány G, Karger-Kocsis J, Czigany T (2003) Tensile fracture and failure behavior of technical flax fibers. J Appl Polym Sci 90(13):3638–3645

    Article  Google Scholar 

  33. Romhány G, Karger-Kocsis J, Czigány T (2003) Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements. Macromol Mater Eng 288(9):699–707

    Article  Google Scholar 

  34. Sreekala M, Czigány T, Romhány G, Thomas S (2003) Investigation of oil palm and pineapple fiber reinforced phenol formaldehyde composites by acoustic emission technique. Polym Polym Compos 11(1):9–18

    Google Scholar 

  35. Lebrun G, Couture A, Laperrière L (2013) Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites. Compos Struct 103:151–160

    Article  Google Scholar 

  36. Talvensaari H, Ladstätter E, Billinger W (2005) Permeability of stitched preform packages. Compos Struct 71(3–4):371–377

    Article  Google Scholar 

  37. Shah D, Schubel PJ, Clifford MJ, Licence P (2011) Mechanical characterization of vacuum infused thermoset matrix composites reinforced with aligned hydroxyethylcellulose sized plant bast fibre yarns. In: 4th international conference on sustainable materials, polymers and composites, pp 6–7

  38. Colom X, Carrasco F, Pages P, Canavate J (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63(2):161–169

    Article  Google Scholar 

  39. Mohanty S, Verma SK, Nayak SK (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol 66(3):538–547

    Article  Google Scholar 

  40. Facca AG, Kortschot MT, Yan N (2007) Predicting the tensile strength of natural fibre reinforced thermoplastics. Compos Sci Technol 67(11):2454–2466

    Article  Google Scholar 

  41. Harper L, Turner T, Warrior N, Rudd C (2006) Characterisation of random carbon fibre composites from a directed fibre preforming process: the effect of fibre length. Compos Part A Appl Sci Manuf 37(11):1863–1878

    Article  Google Scholar 

  42. Andersons J, Poriķe E, Spārniņš E (2009) The effect of mechanical defects on the strength distribution of elementary flax fibres. Compos Sci Technol 69(13):2152–2157

    Article  Google Scholar 

  43. Thygesen L, Eder M, Burgert I (2007) Dislocations in single hemp fibres—investigations into the relationship of structural distortions and tensile properties at the cell wall level. J Mater Sci 42(2):558–564. doi:10.1007/s10853-006-1113-5

    Article  Google Scholar 

  44. Davies GC, Bruce DM (1998) Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Text Res J 68(9):623–629

    Article  Google Scholar 

  45. Eichhorn SJ, Young RJ (2003) Deformation micromechanics of natural cellulose fibre networks and composites. Compos Sci Technol 63(9):1225–1230

    Article  Google Scholar 

  46. Hughes M, Sèbe G, Hague J, Hill C, Spear M, Mott L (2000) An investigation into the effects of micro-compressive defects on interphase behaviour in hemp–epoxy composites using half-fringe photoelasticity. Compos Interface 7(1):13–29

    Article  Google Scholar 

  47. Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A Appl Sci Manuf 33(7):939–948

    Article  Google Scholar 

  48. Mohanty AK, Khan MA, Hinrichsen G (2000) Influence of chemical surface modification on the properties of biodegradable jute fabrics—polyester amide composites. Compos Part A Appl Sci Manuf 31(2):143–150

    Article  Google Scholar 

  49. Bravo A, Toubal L, Koffi D, Erchiqui F (2015) Development of novel green and biocomposite materials: tensile and flexural properties and damage analysis using acoustic emission. Mater Des 66:16–28

    Article  Google Scholar 

  50. Marec A, Thomas J-H, El Guerjouma R (2008) Damage characterization of polymer-based composite materials: multivariable analysis and wavelet transform for clustering acoustic emission data. Mech Syst Signal Process 22(6):1441–1464

    Article  Google Scholar 

  51. Wadim J (1978) Acoustic emission applications. Dunegan Endevco, San Juan Capistrano

    Google Scholar 

  52. Chen O, Karandikar P, Takeda N, Kishi Rcast T (1992) Acoustic emission characterization of a glass–matrix composite. Nondestruct Test Eval 8:869–878

    Article  Google Scholar 

  53. Ceysson O, Salvia M, Vincent L (1996) Damage mechanisms characterisation of carbon fibre/epoxy composite laminates by both electrical resistance measurements and acoustic emission analysis. Scr Mater 34:1273–1280

    Article  Google Scholar 

  54. Kotsikos G, Evans J, Gibson A, Hale J (1999) Use of acoustic emission to characterize corrosion fatigue damage accumulation in glass fiber reinforced polyester laminates. Polym Compos 20:689–696

    Article  Google Scholar 

  55. Gong XL, Laksimi A, Benzeggagh M (1998) Nouvelle approche de l’émission acoustique et son application à l’identification des mécanismes d’endommagement dans les matériaux composites. Rev Compos Matér Av 8:179–205

    Google Scholar 

  56. Meraghni F, Benzeggagh M (1995) Micromechanical modelling of matrix degradation in randomly oriented discontinuous-fibre composites. Compos Sci Technol 55:171–186

    Article  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for its financial support in this project. Special thanks also to Hamed Chaabouni from the Université du Québec à Trois-Rivières (UQTR), for his support in the experimentation part.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gilbert Lebrun.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Habibi, M., Lebrun, G. & Laperrière, L. Experimental characterization of short flax fiber mat composites: tensile and flexural properties and damage analysis using acoustic emission. J Mater Sci 52, 6567–6580 (2017). https://doi.org/10.1007/s10853-017-0892-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0892-1

Keywords

Navigation