Advertisement

Journal of Materials Science

, Volume 52, Issue 11, pp 6567–6580 | Cite as

Experimental characterization of short flax fiber mat composites: tensile and flexural properties and damage analysis using acoustic emission

  • Mohamed Habibi
  • Gilbert LebrunEmail author
  • Luc Laperrière
Original Paper

Abstract

In this work, tensile and flexural tests are realized on composites reinforced with short flax fibers mats produced by a papermaking process. Plates are molded with different fiber volume contents (V f), and to support the analysis, acoustic emission (AE) is coupled to test samples to follow the evolution of different damage modes using a multivariable analysis to classify the acoustic events. It is shown that the tensile and flexural properties increase with V f up to a critical value of about 40%, above which they start to decrease. The contribution of each damage mode in the global failure of the composites is calculated, and their effect in the evolution of mechanical properties is discussed. The results show that compared to the tensile tests, AE events of flexural tests appear at much higher strains, with considerably lower cumulated energies, reflecting the low level of AE events attributed to matrix microcracking. The AE analysis also reveals a clear domination of fiber–matrix friction and fiber pullout mode of fracture, raising the importance of the adhesion of flax fibers–epoxy matrix. The decrease in Young’s modulus and strength at V f above 40% is in a large measure explained by a poor fiber–matrix adhesion.

Keywords

Acoustic Emission Acoustic Emission Signal Fiber Volume Fraction Flax Fiber Acoustic Emission Event 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

The authors wish to thank the Natural Sciences and Engineering Research Council of Canada (NSERC) for its financial support in this project. Special thanks also to Hamed Chaabouni from the Université du Québec à Trois-Rivières (UQTR), for his support in the experimentation part.

References

  1. 1.
    Al-Oqla FM, Sapuan SM (2014) Natural fiber reinforced polymer composites in industrial applications: feasibility of date palm fibers for sustainable automotive industry. J Clean Prod 66:347–354CrossRefGoogle Scholar
  2. 2.
    Kalia S, Avérous L, Njuguna JA, Cherian BM, Dufresne A (2011) Natural fibers, bio-and nanocomposites. Int J Polym Sci 2:1–2Google Scholar
  3. 3.
    Yan L, Chouw N, Jayaraman K (2014) Flax fibre and its composites—a review. Compos Part B Eng 56:296–317CrossRefGoogle Scholar
  4. 4.
    Kandare E, Luangtriratana P, Kandola BK (2014) Fire reaction properties of flax/epoxy laminates and their balsa-core sandwich composites with or without fire protection. Compos Part B Eng 56:602–610CrossRefGoogle Scholar
  5. 5.
    Pil L, Bensadoun F, Pariset J, Verpoest I (2016) Why are designers fascinated by flax and hemp fibre composites? Compos Part A Appl Sci Manuf 83:193–205CrossRefGoogle Scholar
  6. 6.
    Liu Q, Hughes M (2008) The fracture behaviour and toughness of woven flax fibre reinforced epoxy composites. Compos Part A Appl Sci Manuf 39:1644–1652CrossRefGoogle Scholar
  7. 7.
    Liang S, Gning PB, Guillaumat L (2014) Properties evolution of flax/epoxy composites under fatigue loading. Int J Fatigue 63:36–45CrossRefGoogle Scholar
  8. 8.
    Le Duigou A, Kervoelen A, Le Grand A, Nardin M, Baley C (2014) Interfacial properties of flax fibre–epoxy resin systems: existence of a complex interphase. Compos Sci Technol 100:152–157CrossRefGoogle Scholar
  9. 9.
    Liang S, Gning PB, Guillaumat L (2012) A comparative study of fatigue behaviour of flax/epoxy and glass/epoxy composites. Compos Sci Technol 72:535–543CrossRefGoogle Scholar
  10. 10.
    Cuinat-Guerraz N, Dumont MJ, Hubert P (2016) Environmental resistance of flax/bio-based epoxy and flax/polyurethane composites manufactured by resin transfer moulding. Compos Part A Appl Sci Manuf 88:140–147CrossRefGoogle Scholar
  11. 11.
    Oksman K (2001) High quality flax fibre composites manufactured by the resin transfer moulding process. J Reinf Plast Comp 20:621–627CrossRefGoogle Scholar
  12. 12.
    Van de Weyenberg I, Ivens J, De Coster A, Kino B, Baetens E, Verpoest I (2003) Influence of processing and chemical treatment of flax fibres on their composites. Compos Sci Technol 63:1241–1246CrossRefGoogle Scholar
  13. 13.
    Hughes M, Carpenter J, Hill C (2007) Deformation and fracture behaviour of flax fibre reinforced thermosetting polymer matrix composites. J Mater Sci 42(7):2499–2511. doi: 10.1007/s10853-006-1027 CrossRefGoogle Scholar
  14. 14.
    Phillips S, Baets J, Lessard L, Hubert P, Verpoest I (2013) Characterization of flax/epoxy prepregs before and after cure. J Reinf Plast Comp 32(11):777–785CrossRefGoogle Scholar
  15. 15.
    Mittal V, Saini R, Sinha S (2016) Natural fiber-mediated epoxy composites—a review. Compos Part B Eng 99:425–435CrossRefGoogle Scholar
  16. 16.
    Pickering KL, Efendy MGA, Le TM (2016) A review of recent developments in natural fibre composites and their mechanical performance. Compos Part A Appl Sci Manuf 83:98–112CrossRefGoogle Scholar
  17. 17.
    Morrison Iii WH, Archibald DD, Sharma HSS, Akin DE (2000) Chemical and physical characterization of water- and dew-retted flax fibers. Ind Crop Prod 12:39–46CrossRefGoogle Scholar
  18. 18.
    Zhu J, Zhu H, Immonen K, Brighton J, Abhyankar H (2015) Improving mechanical properties of novel flax/tannin composites through different chemical treatments. Ind Crop Prod 67:346–354CrossRefGoogle Scholar
  19. 19.
    Xie Y, Hill CA, Xiao Z, Militz H, Mai C (2010) Silane coupling agents used for natural fiber/polymer composites: a review. Compos Part A Appl Sci Manuf 41:806–819CrossRefGoogle Scholar
  20. 20.
    Alix S, Philippe E, Bessadok A, Lebrun L, Morvan C, Marais S (2009) Effect of chemical treatments on water sorption and mechanical properties of flax fibres. Bioresour Technol 100:4742–4749CrossRefGoogle Scholar
  21. 21.
    Mizutani Y, Nagashima K, Takemoto M, Ono K (2000) Fracture mechanism characterization of cross-ply carbon–fiber composites using acoustic emission analysis. NDT&E Int 33:101–110CrossRefGoogle Scholar
  22. 22.
    McCrory JP, Al-Jumaili SK, Crivelli D, Pearson MR, Eaton MJ, Featherston CA, Guiagliano M, Holford KM, Pullin R (2015) Damage classification in carbon fibre composites using acoustic emission: a comparison of three techniques. Compos Part B Eng 68:424–430CrossRefGoogle Scholar
  23. 23.
    Liu P, Chu J, Liu Y, Zheng J (2012) A study on the failure mechanisms of carbon fiber/epoxy composite laminates using acoustic emission. Mater Des 37:228–235CrossRefGoogle Scholar
  24. 24.
    Njuhovic E, Bräu M, Wolff-Fabris F, Starzynski K, Altstädt V (2015) Identification of failure mechanisms of metallised glass fibre reinforced composites under tensile loading using acoustic emission analysis. Compos Part B Eng 81:1–13CrossRefGoogle Scholar
  25. 25.
    Suresh Kumar C, Arumugam V, Sengottuvelusamy R, Srinivasan S, Dhakal HN (2017) Failure strength prediction of glass/epoxy composite laminates from acoustic emission parameters using artificial neural network. Appl Acoust 115:32–41CrossRefGoogle Scholar
  26. 26.
    De Rosa IM, Santulli C, Sarasini F (2009) Acoustic emission for monitoring the mechanical behaviour of natural fibre composites: a literature review. Compos Part A Appl Sci Manuf 40:1456–1469CrossRefGoogle Scholar
  27. 27.
    Aslan M (2013) Investigation of damage mechanism of flax fibre LPET commingled composites by acoustic emission. Compos Part B Eng 54:289–297CrossRefGoogle Scholar
  28. 28.
    Assarar M, Scida D, El Mahi A, Poilâne C, Ayad R (2011) Influence of water ageing on mechanical properties and damage events of two reinforced composite materials: flax–fibres and glass–fibres. Mater Des 32:788–795CrossRefGoogle Scholar
  29. 29.
    Monti A, El Mahi A, Jendli Z, Guillaumat L (2016) Mechanical behaviour and damage mechanisms analysis of a flax-fibre reinforced composite by acoustic emission. Compos Part A Appl Sci Manuf 90:100–110CrossRefGoogle Scholar
  30. 30.
    Assarar M, Scida D, Zouari W, Saidane EH, Ayad R (2014) Acoustic emission characterization of damage in short hemp–fiber reinforced polypropylene composites. Polym Compos 37(4):1101–1112CrossRefGoogle Scholar
  31. 31.
    El Mahi A, Salem IB, Assarar M, Berbaoui R, Poilane C, El Guerjouma R (2010) Analyse par émission acoustique de l’endommagement des matériaux éco-composites. In: 10ème Congrès Français d’Acoustique, Lyon, FranceGoogle Scholar
  32. 32.
    Romhány G, Karger-Kocsis J, Czigany T (2003) Tensile fracture and failure behavior of technical flax fibers. J Appl Polym Sci 90(13):3638–3645CrossRefGoogle Scholar
  33. 33.
    Romhány G, Karger-Kocsis J, Czigány T (2003) Tensile fracture and failure behavior of thermoplastic starch with unidirectional and cross-ply flax fiber reinforcements. Macromol Mater Eng 288(9):699–707CrossRefGoogle Scholar
  34. 34.
    Sreekala M, Czigány T, Romhány G, Thomas S (2003) Investigation of oil palm and pineapple fiber reinforced phenol formaldehyde composites by acoustic emission technique. Polym Polym Compos 11(1):9–18Google Scholar
  35. 35.
    Lebrun G, Couture A, Laperrière L (2013) Tensile and impregnation behavior of unidirectional hemp/paper/epoxy and flax/paper/epoxy composites. Compos Struct 103:151–160CrossRefGoogle Scholar
  36. 36.
    Talvensaari H, Ladstätter E, Billinger W (2005) Permeability of stitched preform packages. Compos Struct 71(3–4):371–377CrossRefGoogle Scholar
  37. 37.
    Shah D, Schubel PJ, Clifford MJ, Licence P (2011) Mechanical characterization of vacuum infused thermoset matrix composites reinforced with aligned hydroxyethylcellulose sized plant bast fibre yarns. In: 4th international conference on sustainable materials, polymers and composites, pp 6–7Google Scholar
  38. 38.
    Colom X, Carrasco F, Pages P, Canavate J (2003) Effects of different treatments on the interface of HDPE/lignocellulosic fiber composites. Compos Sci Technol 63(2):161–169CrossRefGoogle Scholar
  39. 39.
    Mohanty S, Verma SK, Nayak SK (2006) Dynamic mechanical and thermal properties of MAPE treated jute/HDPE composites. Compos Sci Technol 66(3):538–547CrossRefGoogle Scholar
  40. 40.
    Facca AG, Kortschot MT, Yan N (2007) Predicting the tensile strength of natural fibre reinforced thermoplastics. Compos Sci Technol 67(11):2454–2466CrossRefGoogle Scholar
  41. 41.
    Harper L, Turner T, Warrior N, Rudd C (2006) Characterisation of random carbon fibre composites from a directed fibre preforming process: the effect of fibre length. Compos Part A Appl Sci Manuf 37(11):1863–1878CrossRefGoogle Scholar
  42. 42.
    Andersons J, Poriķe E, Spārniņš E (2009) The effect of mechanical defects on the strength distribution of elementary flax fibres. Compos Sci Technol 69(13):2152–2157CrossRefGoogle Scholar
  43. 43.
    Thygesen L, Eder M, Burgert I (2007) Dislocations in single hemp fibres—investigations into the relationship of structural distortions and tensile properties at the cell wall level. J Mater Sci 42(2):558–564. doi: 10.1007/s10853-006-1113-5 CrossRefGoogle Scholar
  44. 44.
    Davies GC, Bruce DM (1998) Effect of environmental relative humidity and damage on the tensile properties of flax and nettle fibers. Text Res J 68(9):623–629CrossRefGoogle Scholar
  45. 45.
    Eichhorn SJ, Young RJ (2003) Deformation micromechanics of natural cellulose fibre networks and composites. Compos Sci Technol 63(9):1225–1230CrossRefGoogle Scholar
  46. 46.
    Hughes M, Sèbe G, Hague J, Hill C, Spear M, Mott L (2000) An investigation into the effects of micro-compressive defects on interphase behaviour in hemp–epoxy composites using half-fringe photoelasticity. Compos Interface 7(1):13–29CrossRefGoogle Scholar
  47. 47.
    Baley C (2002) Analysis of the flax fibres tensile behaviour and analysis of the tensile stiffness increase. Compos Part A Appl Sci Manuf 33(7):939–948CrossRefGoogle Scholar
  48. 48.
    Mohanty AK, Khan MA, Hinrichsen G (2000) Influence of chemical surface modification on the properties of biodegradable jute fabrics—polyester amide composites. Compos Part A Appl Sci Manuf 31(2):143–150CrossRefGoogle Scholar
  49. 49.
    Bravo A, Toubal L, Koffi D, Erchiqui F (2015) Development of novel green and biocomposite materials: tensile and flexural properties and damage analysis using acoustic emission. Mater Des 66:16–28CrossRefGoogle Scholar
  50. 50.
    Marec A, Thomas J-H, El Guerjouma R (2008) Damage characterization of polymer-based composite materials: multivariable analysis and wavelet transform for clustering acoustic emission data. Mech Syst Signal Process 22(6):1441–1464CrossRefGoogle Scholar
  51. 51.
    Wadim J (1978) Acoustic emission applications. Dunegan Endevco, San Juan CapistranoGoogle Scholar
  52. 52.
    Chen O, Karandikar P, Takeda N, Kishi Rcast T (1992) Acoustic emission characterization of a glass–matrix composite. Nondestruct Test Eval 8:869–878CrossRefGoogle Scholar
  53. 53.
    Ceysson O, Salvia M, Vincent L (1996) Damage mechanisms characterisation of carbon fibre/epoxy composite laminates by both electrical resistance measurements and acoustic emission analysis. Scr Mater 34:1273–1280CrossRefGoogle Scholar
  54. 54.
    Kotsikos G, Evans J, Gibson A, Hale J (1999) Use of acoustic emission to characterize corrosion fatigue damage accumulation in glass fiber reinforced polyester laminates. Polym Compos 20:689–696CrossRefGoogle Scholar
  55. 55.
    Gong XL, Laksimi A, Benzeggagh M (1998) Nouvelle approche de l’émission acoustique et son application à l’identification des mécanismes d’endommagement dans les matériaux composites. Rev Compos Matér Av 8:179–205Google Scholar
  56. 56.
    Meraghni F, Benzeggagh M (1995) Micromechanical modelling of matrix degradation in randomly oriented discontinuous-fibre composites. Compos Sci Technol 55:171–186CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Mohamed Habibi
    • 1
  • Gilbert Lebrun
    • 1
    Email author
  • Luc Laperrière
    • 1
  1. 1.Laboratoire de Mécanique et Éco-Matériaux (LMEM)Université du Québec à Trois-Rivières (UQTR)Trois-RivièresCanada

Personalised recommendations