Skip to main content

Single-source macroporous hybrid materials by melt-shear organization of core–shell particles

Abstract

The preparation of porous materials is an interesting field for a huge variety of potential applications. Herein we report an efficient and convenient strategy for the creation of inverse colloidal crystal structures based on soft core/shell polymer particle templating. This single-source strategy is based on starved-feed emulsion polymerization of hybrid core/shell particles consisting of a poly(methyl methacrylate-co-allyl methacrylate) (P(MMA-co-ALMA)) core and a poly(ethyl acrylate-co-(3-methacryloxypropyl-trimethoxysilane)) (PEA-co-PMEMO) shell. The resulting monodisperse particles are analyzed with respect to their size and distribution by transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. The hybrid monodisperse core/shell particles can be aligned to a colloidal crystal by using the convenient melt-shear organization technique. As a result, free-standing and crack-free hybrid polymer colloidal crystal films are accessible without the need of any solvent or dispersion medium. The processing step is investigated regarding different parameters comprising temperature and pressure for the influence on the colloidal crystal film formation. Furthermore, resulting core/shell ratio is tailored by starved-feed emulsion polymerization conditions, since the ratio affects the quality of the porous structure after thermal treatment of colloidal crystal films. The incorporation of alkoxysilane-containing monomers offers a unique crosslinking strategy that yields mechanically robust and thermally stable films. Due to the increased stability, a removal of PMMA cores is possible by thermal treatment of the templating colloidal crystal films leading to almost isoporous free-standing hybrid materials as determined by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM).

This is a preview of subscription content, access via your institution.

Figure 1
Scheme 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

References

  1. Christodoulou L, Venables JD (2003) Multifunctional material systems: the first generation. JOM 55:39–45

    Article  Google Scholar 

  2. Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821

    Article  Google Scholar 

  3. Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102

    Article  Google Scholar 

  4. Zhao Y, Jiang L (2009) Hollow micro/nanomaterials with multilevel interior structures. Adv Mater 21:3621–3638. doi:10.1002/adma.200803645

    Article  Google Scholar 

  5. Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458

    Article  Google Scholar 

  6. Aissou K, Shaver J, Fleury G, Pecastaings G, Brochon C, Navarro C, Grauby S, Rampnoux JM, Dilhaire S, Hadziioannou G (2013) Nanoscale block copolymer ordering induced by visible interferometric micropatterning: a route towards large scale block copolymer 2D crystals. Adv Mater 25(2):213–217. doi:10.1002/adma.201203254

    Article  Google Scholar 

  7. Koo K, Ahn H, Kim S-W, Ryu DY, Russell TP (2013) Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large. Soft Matter 9(38):9059. doi:10.1039/c3sm51083b

    Article  Google Scholar 

  8. Orilall MC, Wiesner U (2011) Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. Chem Soc Rev 40:520–535

    Article  Google Scholar 

  9. She M-S, Lo T-Y, Hsueh H-Y, Ho R-M (2013) Nanostructured thin films of degradable block copolymers and their applications. NPG Asia Mater 5:e42

    Article  Google Scholar 

  10. Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41:4909–4927

    Article  Google Scholar 

  11. Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42:4198–4216

    Article  Google Scholar 

  12. Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42:3721–3739

    Article  Google Scholar 

  13. Rawolle M, Niedermeier MA, Kaune G, Perlich J, Lellig P, Memesa M, Cheng YJ, Gutmann JS, Müller-Buschbaum P (2012) Fabrication and characterization of nanostructured titania films with integrated function from inorganic-organic hybrid materials. Chem Soc Rev 41:5131–5142

    Article  Google Scholar 

  14. Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1(2):172–179

    Article  Google Scholar 

  15. Piao Y, Burns A, Kim J, Wiesner U, Hyeon T (2008) Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater 18:3745–3758

    Article  Google Scholar 

  16. Schüth F, Schmidt W (2002) Microporous and mesoporous materials. Adv Mater 14:629–638

    Article  Google Scholar 

  17. Stein A (2003) Advances in microporous and mesoporous solids—highlights of recent progress. Adv Mater 15:763–775

    Article  Google Scholar 

  18. Thomas A, Goettmann F, Antonietti M (2008) Hard templates for soft materials: creating nanostructured organic materials. Chem Mater 20:738–755

    Article  Google Scholar 

  19. Llusar M, Sanchez C (2008) Inorganic and hybrid nanofibrous materials templated with organogelators. Chem Mater 20:782–820

    Article  Google Scholar 

  20. Joshi RK, Schneider JJ (2012) Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem Soc Rev 41:5285–5312. doi:10.1039/c2cs35089k

    Article  Google Scholar 

  21. Scheid D, Cherkashinin G, Ionescu E, Gallei M (2014) Single-source magnetic nanorattles by using convenient emulsion polymerization protocols. Langmuir 30(5):1204–1209

    Article  Google Scholar 

  22. Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019. doi:10.1002/adma.200800854

    Article  Google Scholar 

  23. Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed Engl 50:1492–1522

    Article  Google Scholar 

  24. Galisteo-López JF, Ibisate M, Sapienza R, Froufe-Pérez LS, Blanco Á, López C (2011) Self-assembled photonic structures. Adv Mater 23:30–69

    Article  Google Scholar 

  25. von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42:2528–2554

    Article  Google Scholar 

  26. Schäfer CG, Vowinkel S, Hellmann GP, Herdt T, Contiu C, Schneider JJ, Gallei M (2014) A polymer based and template-directed approach towards functional multidimensional microstructured organic/inorganic hybrid materials. J Mater Chem C 2:7960–7975

    Article  Google Scholar 

  27. Pursiainen OLJ, Baumberg JJ, Winkler H, Viel B, Spahn P, Ruhl T (2008) Shear-induced organization in flexible polymer opals. Adv Mater 20:1484–1487

    Article  Google Scholar 

  28. Ruhl T, Spahn P, Hellmann GP (2003) Artificial opals prepared by melt compression. Polymer 44:7625–7634

    Article  Google Scholar 

  29. Finlayson CE, Spahn P, Snoswell DR, Yates G, Kontogeorgos A, Haines AI, Hellmann GP, Baumberg JJ (2011) 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing. Adv Mater 23:1540–15444

    Article  Google Scholar 

  30. Kontogeorgos A, Snoswell DRE, Finlayson CE, Baumberg JJ, Spahn P, Hellmann GP (2010) Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals. Phys Rev Lett 105:233909

    Article  Google Scholar 

  31. Wong HS, Mackley M, Butler S, Baumberg J, Snoswell D, Finlayson C, Zhao Q (2014) The rheology and processing of “edge sheared” colloidal polymer opals. J Rheol 58(2):397–409

    Article  Google Scholar 

  32. Zhao Q, Finlayson CE, Snoswell DRE, Haines A, Schäfer C, Spahn P, Hellmann GP, Petukhov AV, Herrmann L, Burdet P, Midgley PA, Butler S, Mackley M, Guo Q, Baumberg JJ (2016) Large-scale ordering of nanoparticles using viscoelastic shear processing. Nat Commun 7:11661

    Article  Google Scholar 

  33. Wang J, Zhang Y, Wang S, Song Y, Jiang L (2011) Bioinspired colloidal photonic crystals with controllable wettability. Acc Chem Res 44:405–415

    Article  Google Scholar 

  34. Yang D, Ye S, Ge J (2014) From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation-based display panels. Adv Funct Mater 24:3197–3205

    Article  Google Scholar 

  35. Schäfer CG, Gallei M, Zahn JT, Engelhardt J, Hellmann GP, Rehahn M (2013) Reversible light-, thermo-, and mechano-responsive elastomeric polymer opal films. Chem Mater 25:2309–2318

    Article  Google Scholar 

  36. Schäfer CG, Smolin DA, Hellmann GP, Gallei M (2013) Fully reversible shape transition of soft spheres in elastomeric polymer opal films. Langmuir 29:11275–11283

    Article  Google Scholar 

  37. Schäfer CG, Viel B, Hellmann GP, Rehahn M, Gallei M (2013) Thermo-cross-linked elastomeric opal films. ACS Appl Mater Interfaces 5(21):10623–10632

    Article  Google Scholar 

  38. Schäfer CG, Lederle C, Zentel K, Stuhn B, Gallei M (2014) Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. Macromol Rapid Commun 35(21):1852–1860

    Google Scholar 

  39. Schäfer CG, Lederle C, Zentel K, Stühn B, Gallei M (2014) Utilising stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. Macromol Rap Commun 35(21):1852–1860

    Google Scholar 

  40. Scheid D, Lederle C, Vowinkel S, Schäfer CG, Stühn B, Gallei M (2014) Redox- and mechano-chromic response of metallopolymer-based elastomeric colloidal crystal films. J Mater Chem C 2:2583–2590

    Article  Google Scholar 

  41. Schäfer CG, Winter T, Heidt S, Dietz C, Ding T, Baumberg JJ, Gallei M (2015) Smart polymer inverse-opal photonic crystal films by melt-shear organization for hybrid core–shell architectures. J Mater Chem C 3(10):2204–2214

    Article  Google Scholar 

  42. Vowinkel S, Schäfer CG, Cherkashinin G, Fasel C, Roth F, Liu N, Dietz C, Lonescu E, Gallei M (2016) 3D-ordered carbon materials by melt-shear organization for tailor-made hybrid core–shell polymer particle architectures. J Mater Chem C 4:3976–3986

    Article  Google Scholar 

  43. Ni K, Shan G, Weng Z, Sheibat-Othman N, Fevotte G, Lefebvre F, Bourgeat-Lami E (2005) Synthesis of hybrid core-shell nanoparticles by emulsion (co) polymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Macromolecules 38(17):7321–7329

    Article  Google Scholar 

  44. Ni K-F, Shan G-R, Weng Z-X (2006) Synthesis of hybrid nanocapsules by miniemulsion (co) polymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Macromolecules 39(7):2529–2535

    Article  Google Scholar 

  45. Zhang S-W, Zhou S-X, Weng Y-M, Wu L-M (2006) Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Langmuir 22(10):4674–4679

    Article  Google Scholar 

  46. Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski J (2003) Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves. Polym Degrad Stab 79(2):271–281

    Article  Google Scholar 

  47. Manring LE (1988) Thermal degradation of saturated poly (methyl methacrylate). Macromolecules 21(2):528–530

    Article  Google Scholar 

  48. Manring LE, Sogah DY, Cohen GM (1989) Thermal degradation of poly (methyl methacrylate). 3. Polymer with head-to-head linkages. Macromolecules 22(12):4652–4654

    Article  Google Scholar 

  49. Schäfer CG, Lederle C, Zentel K, Stühn B, Gallei M (2014) Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. Macromol Rapid Commun 35(21):1852–1860

    Google Scholar 

  50. Schäfer C, Winter T, Heidt S, Dietz C, Ding T, Baumberg J, Gallei M (2015) Smart polymer inverse-opal photonic crystal films by melt-shear organization for hybrid core–shell architectures. J Mater Chem C 3(10):2204–2214

    Article  Google Scholar 

Download references

Acknowledgements

S.V. thanks the Evangelisches Studienwerk Villigst and the Max-Buchner Foundation for financial support. M.G. would like to thank the Fonds der Chemischen Industrie and the LOEWE project iNAPO by the Hessen State Ministry of Higher Education for partial financial support of this work. M.G. additionally acknowledges the German Research Foundation (DFG GA 2169/5-1) for partial support of this work. This work has been additionally supported in the frame of the Smart Inorganic Polymer EU network (COST CM10302, SIPS).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Markus Gallei.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2051 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Vowinkel, S., Malz, F., Rode, K. et al. Single-source macroporous hybrid materials by melt-shear organization of core–shell particles. J Mater Sci 52, 11179–11190 (2017). https://doi.org/10.1007/s10853-017-0891-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0891-2

Keywords

  • Colloidal Crystal
  • Shell Material
  • Ethyl Acrylate
  • Miniemulsion Polymerization
  • Ethyl Acrylate