Journal of Materials Science

, Volume 52, Issue 19, pp 11179–11190 | Cite as

Single-source macroporous hybrid materials by melt-shear organization of core–shell particles

  • Steffen Vowinkel
  • Frank Malz
  • Karsten Rode
  • Markus GalleiEmail author
Macroporous Materials


The preparation of porous materials is an interesting field for a huge variety of potential applications. Herein we report an efficient and convenient strategy for the creation of inverse colloidal crystal structures based on soft core/shell polymer particle templating. This single-source strategy is based on starved-feed emulsion polymerization of hybrid core/shell particles consisting of a poly(methyl methacrylate-co-allyl methacrylate) (P(MMA-co-ALMA)) core and a poly(ethyl acrylate-co-(3-methacryloxypropyl-trimethoxysilane)) (PEA-co-PMEMO) shell. The resulting monodisperse particles are analyzed with respect to their size and distribution by transmission electron microscopy (TEM) and dynamic light scattering (DLS) measurements. The hybrid monodisperse core/shell particles can be aligned to a colloidal crystal by using the convenient melt-shear organization technique. As a result, free-standing and crack-free hybrid polymer colloidal crystal films are accessible without the need of any solvent or dispersion medium. The processing step is investigated regarding different parameters comprising temperature and pressure for the influence on the colloidal crystal film formation. Furthermore, resulting core/shell ratio is tailored by starved-feed emulsion polymerization conditions, since the ratio affects the quality of the porous structure after thermal treatment of colloidal crystal films. The incorporation of alkoxysilane-containing monomers offers a unique crosslinking strategy that yields mechanically robust and thermally stable films. Due to the increased stability, a removal of PMMA cores is possible by thermal treatment of the templating colloidal crystal films leading to almost isoporous free-standing hybrid materials as determined by thermogravimetric analysis (TGA) and scanning electron microscopy (SEM).


Colloidal Crystal Shell Material Ethyl Acrylate Miniemulsion Polymerization Ethyl Acrylate 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



S.V. thanks the Evangelisches Studienwerk Villigst and the Max-Buchner Foundation for financial support. M.G. would like to thank the Fonds der Chemischen Industrie and the LOEWE project iNAPO by the Hessen State Ministry of Higher Education for partial financial support of this work. M.G. additionally acknowledges the German Research Foundation (DFG GA 2169/5-1) for partial support of this work. This work has been additionally supported in the frame of the Smart Inorganic Polymer EU network (COST CM10302, SIPS).

Compliance with ethical standards

Conflict of interest

The authors declare that they have no conflict of interest.

Supplementary material

10853_2017_891_MOESM1_ESM.docx (2 mb)
Supplementary material 1 (DOCX 2051 kb)


  1. 1.
    Christodoulou L, Venables JD (2003) Multifunctional material systems: the first generation. JOM 55:39–45CrossRefGoogle Scholar
  2. 2.
    Davis ME (2002) Ordered porous materials for emerging applications. Nature 417:813–821CrossRefGoogle Scholar
  3. 3.
    Burda C, Chen X, Narayanan R, El-Sayed MA (2005) Chemistry and properties of nanocrystals of different shapes. Chem Rev 105:1025–1102CrossRefGoogle Scholar
  4. 4.
    Zhao Y, Jiang L (2009) Hollow micro/nanomaterials with multilevel interior structures. Adv Mater 21:3621–3638. doi: 10.1002/adma.200803645 CrossRefGoogle Scholar
  5. 5.
    Talapin DV, Lee J-S, Kovalenko MV, Shevchenko EV (2010) Prospects of colloidal nanocrystals for electronic and optoelectronic applications. Chem Rev 110:389–458CrossRefGoogle Scholar
  6. 6.
    Aissou K, Shaver J, Fleury G, Pecastaings G, Brochon C, Navarro C, Grauby S, Rampnoux JM, Dilhaire S, Hadziioannou G (2013) Nanoscale block copolymer ordering induced by visible interferometric micropatterning: a route towards large scale block copolymer 2D crystals. Adv Mater 25(2):213–217. doi: 10.1002/adma.201203254 CrossRefGoogle Scholar
  7. 7.
    Koo K, Ahn H, Kim S-W, Ryu DY, Russell TP (2013) Directed self-assembly of block copolymers in the extreme: guiding microdomains from the small to the large. Soft Matter 9(38):9059. doi: 10.1039/c3sm51083b CrossRefGoogle Scholar
  8. 8.
    Orilall MC, Wiesner U (2011) Block copolymer based composition and morphology control in nanostructured hybrid materials for energy conversion and storage: solar cells, batteries, and fuel cells. Chem Soc Rev 40:520–535CrossRefGoogle Scholar
  9. 9.
    She M-S, Lo T-Y, Hsueh H-Y, Ho R-M (2013) Nanostructured thin films of degradable block copolymers and their applications. NPG Asia Mater 5:e42CrossRefGoogle Scholar
  10. 10.
    Ren Y, Ma Z, Bruce PG (2012) Ordered mesoporous metal oxides: synthesis and applications. Chem Soc Rev 41:4909–4927CrossRefGoogle Scholar
  11. 11.
    Innocenzi P, Malfatti L (2013) Mesoporous thin films: properties and applications. Chem Soc Rev 42:4198–4216CrossRefGoogle Scholar
  12. 12.
    Petkovich ND, Stein A (2013) Controlling macro- and mesostructures with hierarchical porosity through combined hard and soft templating. Chem Soc Rev 42:3721–3739CrossRefGoogle Scholar
  13. 13.
    Rawolle M, Niedermeier MA, Kaune G, Perlich J, Lellig P, Memesa M, Cheng YJ, Gutmann JS, Müller-Buschbaum P (2012) Fabrication and characterization of nanostructured titania films with integrated function from inorganic-organic hybrid materials. Chem Soc Rev 41:5131–5142CrossRefGoogle Scholar
  14. 14.
    Whitesides GM (2005) Nanoscience, nanotechnology, and chemistry. Small 1(2):172–179CrossRefGoogle Scholar
  15. 15.
    Piao Y, Burns A, Kim J, Wiesner U, Hyeon T (2008) Designed fabrication of silica-based nanostructured particle systems for nanomedicine applications. Adv Funct Mater 18:3745–3758CrossRefGoogle Scholar
  16. 16.
    Schüth F, Schmidt W (2002) Microporous and mesoporous materials. Adv Mater 14:629–638CrossRefGoogle Scholar
  17. 17.
    Stein A (2003) Advances in microporous and mesoporous solids—highlights of recent progress. Adv Mater 15:763–775CrossRefGoogle Scholar
  18. 18.
    Thomas A, Goettmann F, Antonietti M (2008) Hard templates for soft materials: creating nanostructured organic materials. Chem Mater 20:738–755CrossRefGoogle Scholar
  19. 19.
    Llusar M, Sanchez C (2008) Inorganic and hybrid nanofibrous materials templated with organogelators. Chem Mater 20:782–820CrossRefGoogle Scholar
  20. 20.
    Joshi RK, Schneider JJ (2012) Assembly of one dimensional inorganic nanostructures into functional 2D and 3D architectures. Synthesis, arrangement and functionality. Chem Soc Rev 41:5285–5312. doi: 10.1039/c2cs35089k CrossRefGoogle Scholar
  21. 21.
    Scheid D, Cherkashinin G, Ionescu E, Gallei M (2014) Single-source magnetic nanorattles by using convenient emulsion polymerization protocols. Langmuir 30(5):1204–1209CrossRefGoogle Scholar
  22. 22.
    Lou XW, Archer LA, Yang Z (2008) Hollow micro-/nanostructures: synthesis and applications. Adv Mater 20:3987–4019. doi: 10.1002/adma.200800854 CrossRefGoogle Scholar
  23. 23.
    Ge J, Yin Y (2011) Responsive photonic crystals. Angew Chem Int Ed Engl 50:1492–1522CrossRefGoogle Scholar
  24. 24.
    Galisteo-López JF, Ibisate M, Sapienza R, Froufe-Pérez LS, Blanco Á, López C (2011) Self-assembled photonic structures. Adv Mater 23:30–69CrossRefGoogle Scholar
  25. 25.
    von Freymann G, Kitaev V, Lotsch BV, Ozin GA (2013) Bottom-up assembly of photonic crystals. Chem Soc Rev 42:2528–2554CrossRefGoogle Scholar
  26. 26.
    Schäfer CG, Vowinkel S, Hellmann GP, Herdt T, Contiu C, Schneider JJ, Gallei M (2014) A polymer based and template-directed approach towards functional multidimensional microstructured organic/inorganic hybrid materials. J Mater Chem C 2:7960–7975CrossRefGoogle Scholar
  27. 27.
    Pursiainen OLJ, Baumberg JJ, Winkler H, Viel B, Spahn P, Ruhl T (2008) Shear-induced organization in flexible polymer opals. Adv Mater 20:1484–1487CrossRefGoogle Scholar
  28. 28.
    Ruhl T, Spahn P, Hellmann GP (2003) Artificial opals prepared by melt compression. Polymer 44:7625–7634CrossRefGoogle Scholar
  29. 29.
    Finlayson CE, Spahn P, Snoswell DR, Yates G, Kontogeorgos A, Haines AI, Hellmann GP, Baumberg JJ (2011) 3D bulk ordering in macroscopic solid opaline films by edge-induced rotational shearing. Adv Mater 23:1540–15444CrossRefGoogle Scholar
  30. 30.
    Kontogeorgos A, Snoswell DRE, Finlayson CE, Baumberg JJ, Spahn P, Hellmann GP (2010) Inducing symmetry breaking in nanostructures: anisotropic stretch-tuning photonic crystals. Phys Rev Lett 105:233909CrossRefGoogle Scholar
  31. 31.
    Wong HS, Mackley M, Butler S, Baumberg J, Snoswell D, Finlayson C, Zhao Q (2014) The rheology and processing of “edge sheared” colloidal polymer opals. J Rheol 58(2):397–409CrossRefGoogle Scholar
  32. 32.
    Zhao Q, Finlayson CE, Snoswell DRE, Haines A, Schäfer C, Spahn P, Hellmann GP, Petukhov AV, Herrmann L, Burdet P, Midgley PA, Butler S, Mackley M, Guo Q, Baumberg JJ (2016) Large-scale ordering of nanoparticles using viscoelastic shear processing. Nat Commun 7:11661CrossRefGoogle Scholar
  33. 33.
    Wang J, Zhang Y, Wang S, Song Y, Jiang L (2011) Bioinspired colloidal photonic crystals with controllable wettability. Acc Chem Res 44:405–415CrossRefGoogle Scholar
  34. 34.
    Yang D, Ye S, Ge J (2014) From metastable colloidal crystalline arrays to fast responsive mechanochromic photonic gels: an organic gel for deformation-based display panels. Adv Funct Mater 24:3197–3205CrossRefGoogle Scholar
  35. 35.
    Schäfer CG, Gallei M, Zahn JT, Engelhardt J, Hellmann GP, Rehahn M (2013) Reversible light-, thermo-, and mechano-responsive elastomeric polymer opal films. Chem Mater 25:2309–2318CrossRefGoogle Scholar
  36. 36.
    Schäfer CG, Smolin DA, Hellmann GP, Gallei M (2013) Fully reversible shape transition of soft spheres in elastomeric polymer opal films. Langmuir 29:11275–11283CrossRefGoogle Scholar
  37. 37.
    Schäfer CG, Viel B, Hellmann GP, Rehahn M, Gallei M (2013) Thermo-cross-linked elastomeric opal films. ACS Appl Mater Interfaces 5(21):10623–10632CrossRefGoogle Scholar
  38. 38.
    Schäfer CG, Lederle C, Zentel K, Stuhn B, Gallei M (2014) Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. Macromol Rapid Commun 35(21):1852–1860Google Scholar
  39. 39.
    Schäfer CG, Lederle C, Zentel K, Stühn B, Gallei M (2014) Utilising stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. Macromol Rap Commun 35(21):1852–1860Google Scholar
  40. 40.
    Scheid D, Lederle C, Vowinkel S, Schäfer CG, Stühn B, Gallei M (2014) Redox- and mechano-chromic response of metallopolymer-based elastomeric colloidal crystal films. J Mater Chem C 2:2583–2590CrossRefGoogle Scholar
  41. 41.
    Schäfer CG, Winter T, Heidt S, Dietz C, Ding T, Baumberg JJ, Gallei M (2015) Smart polymer inverse-opal photonic crystal films by melt-shear organization for hybrid core–shell architectures. J Mater Chem C 3(10):2204–2214CrossRefGoogle Scholar
  42. 42.
    Vowinkel S, Schäfer CG, Cherkashinin G, Fasel C, Roth F, Liu N, Dietz C, Lonescu E, Gallei M (2016) 3D-ordered carbon materials by melt-shear organization for tailor-made hybrid core–shell polymer particle architectures. J Mater Chem C 4:3976–3986CrossRefGoogle Scholar
  43. 43.
    Ni K, Shan G, Weng Z, Sheibat-Othman N, Fevotte G, Lefebvre F, Bourgeat-Lami E (2005) Synthesis of hybrid core-shell nanoparticles by emulsion (co) polymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Macromolecules 38(17):7321–7329CrossRefGoogle Scholar
  44. 44.
    Ni K-F, Shan G-R, Weng Z-X (2006) Synthesis of hybrid nanocapsules by miniemulsion (co) polymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Macromolecules 39(7):2529–2535CrossRefGoogle Scholar
  45. 45.
    Zhang S-W, Zhou S-X, Weng Y-M, Wu L-M (2006) Synthesis of silanol-functionalized latex nanoparticles through miniemulsion copolymerization of styrene and γ-methacryloxypropyltrimethoxysilane. Langmuir 22(10):4674–4679CrossRefGoogle Scholar
  46. 46.
    Ferriol M, Gentilhomme A, Cochez M, Oget N, Mieloszynski J (2003) Thermal degradation of poly (methyl methacrylate)(PMMA): modelling of DTG and TG curves. Polym Degrad Stab 79(2):271–281CrossRefGoogle Scholar
  47. 47.
    Manring LE (1988) Thermal degradation of saturated poly (methyl methacrylate). Macromolecules 21(2):528–530CrossRefGoogle Scholar
  48. 48.
    Manring LE, Sogah DY, Cohen GM (1989) Thermal degradation of poly (methyl methacrylate). 3. Polymer with head-to-head linkages. Macromolecules 22(12):4652–4654CrossRefGoogle Scholar
  49. 49.
    Schäfer CG, Lederle C, Zentel K, Stühn B, Gallei M (2014) Utilizing stretch-tunable thermochromic elastomeric opal films as novel reversible switchable photonic materials. Macromol Rapid Commun 35(21):1852–1860Google Scholar
  50. 50.
    Schäfer C, Winter T, Heidt S, Dietz C, Ding T, Baumberg J, Gallei M (2015) Smart polymer inverse-opal photonic crystal films by melt-shear organization for hybrid core–shell architectures. J Mater Chem C 3(10):2204–2214CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Ernst-Berl-Institute for Chemical Engineering and Macromolecular ScienceTechnische Universität DarmstadtDarmstadtGermany
  2. 2.Fraunhofer-Institut für Betriebsfestigkeit und Systemzuverlässigkeit LBFDarmstadtGermany

Personalised recommendations