Journal of Materials Science

, Volume 52, Issue 11, pp 6486–6497 | Cite as

Layered microstructures based on BaZr0.85Y0.15O3−δ by pulsed laser deposition for metal-supported proton ceramic electrolyser cells

  • Elena StefanEmail author
  • Marit StangeEmail author
  • Christelle Denonville
  • Yngve Larring
  • Nicolas Hildenbrand
  • Truls Norby
  • Reidar Haugsrud
Original Paper


Planar metal-supported cell designs provide cost-effective scaling-up of solid oxide fuel cells and electrolysers. Here, we report on the fabrication of a BaZr0.85Y0.15O3−δ–NiO (BZY15–NiO) composite electrode and BaZr0.85Y0.15O3−δ (BZY15) proton-conducting electrolyte films on metal and ceramic substrates using pulsed laser deposition (PLD). The results demonstrate successful sequential deposition of porous electrode and dense electrolyte structure by PLD at moderate temperatures, without the need for subsequent high-temperature sintering. The decrease in roughness of the metal substrate used for deposition by spray-coating intermediary oxide layers had significant importance to the fabrication of functional layers as thin films. Crystalline porous BZY15–NiO and dense BZY15 films were sequentially deposited at high substrate temperature on metal supports (MS) with or without an electron-conducting barrier oxide layer, e.g. MS/(BZY15–Ni)/(BZY15–NiO)/BZY15 and MS/CeO2/(BZY15–NiO)/BZY15. The different microstructures for electrode and electrolyte were achieved with deposition steps at different substrate temperatures (800, 600 °C) and a gradual decrease in the pressure of O2 in the deposition chamber.


CeO2 Pulse Laser Deposition Electrolyte Film High Substrate Temperature Electrolyte Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Financial support from the Research Council of Norway (RCN) through the ENERGIX program (Project No: 228819/E20) is gratefully acknowledged.


  1. 1.
    Ebbesen SD, Jensen SH, Hauch A, Mogensen MB (2014) High temperature electrolysis in alkaline cells, solid proton conducting cells, and solid oxide cells. Chem Rev 114:10697–10734. doi: 10.1021/cr5000865 CrossRefGoogle Scholar
  2. 2.
    Laguna-Bercero MA (2012) Recent advances in high temperature electrolysis using solid oxide fuel cells: a review. J Power Sources 203:4–16. doi: 10.1016/j.jpowsour.2011.12.019 CrossRefGoogle Scholar
  3. 3.
    Steele BCH, Heinzel A (2001) Materials for fuel-cell technologies. Nature 414:345–352. doi: 10.1038/35104620 CrossRefGoogle Scholar
  4. 4.
    Fabbri E, Pergolesi D, Traversa E (2010) Materials challenges toward proton-conducting oxide fuel cells: a critical review. Chem Soc Rev 39:4355–4369. doi: 10.1039/B902343G CrossRefGoogle Scholar
  5. 5.
    Shafi SP, Bi L, Boulfrad S, Traversa E (2015) Yttrium and nickel Co-Doped BaZrO3 as a proton-conducting electrolyte for intermediate temperature solid oxide fuel cells. ECS Trans 68:503–508. doi: 10.1149/06801.0503ecst CrossRefGoogle Scholar
  6. 6.
    Kreuer KD (1997) On the development of proton conducting materials for technological applications. Solid State Ion 97:1–15. doi: 10.1016/S0167-2738(97)00082-9 CrossRefGoogle Scholar
  7. 7.
    Iwahara H, Yajima T, Hibino T et al (1993) Protonic conduction in calcium, strontium and barium zirconates. Solid State Ion 61:65–69. doi: 10.1016/0167-2738(93)90335-Z CrossRefGoogle Scholar
  8. 8.
    Babilo P, Haile SM (2005) Enhanced sintering of yttrium-doped barium zirconate by addition of ZnO. J Am Ceram Soc 88:2362–2368. doi: 10.1111/j.1551-2916.2005.00449.x CrossRefGoogle Scholar
  9. 9.
    Nikodemski S, Tong J, O’Hayre R (2013) Solid-state reactive sintering mechanism for proton conducting ceramics. Solid State Ion 253:201–210. doi: 10.1016/j.ssi.2013.09.025 CrossRefGoogle Scholar
  10. 10.
    Tong J, Clark D, Hoban M, O’Hayre R (2010) Cost-effective solid-state reactive sintering method for high conductivity proton conducting yttrium-doped barium zirconium ceramics. Solid State Ion 181:496–503. doi: 10.1016/j.ssi.2010.02.008 CrossRefGoogle Scholar
  11. 11.
    Tong J, Clark D, Bernau L et al (2010) Solid-state reactive sintering mechanism for large-grained yttrium-doped barium zirconate proton conducting ceramics. J Mater Chem 20:6333–6341. doi: 10.1039/C0JM00381F CrossRefGoogle Scholar
  12. 12.
    Pergolesi D, Fabbri E, D’Epifanio A et al (2010) High proton conduction in grain-boundary-free yttrium-doped barium zirconate films grown by pulsed laser deposition. Nat Mater 9:846–852. doi: 10.1038/nmat2837 CrossRefGoogle Scholar
  13. 13.
    Bi L, Boulfrad S, Traversa E (2015) Reversible solid oxide fuel cells (R-SOFCs) with chemically stable proton-conducting oxides. Solid State Ion 275:101–105. doi: 10.1016/j.ssi.2015.03.006 CrossRefGoogle Scholar
  14. 14.
    Bi L, Boulfrad S, Traversa E (2014) Steam electrolysis by solid oxide electrolysis cells (SOECs) with proton-conducting oxides. Chem Soc Rev 43:8255–8270. doi: 10.1039/C4CS00194J CrossRefGoogle Scholar
  15. 15.
    Azad AK, Savaniu C, Tao S et al (2008) Structural origins of the differing grain conductivity values in BaZr 0.9 Y 0.1 O 2.95 and indication of novel approach to counter defect association. J Mater Chem 18:3414–3418. doi: 10.1039/B806190D CrossRefGoogle Scholar
  16. 16.
    Evans A, Bieberle-Hütter A, Rupp JLM, Gauckler LJ (2009) Review on microfabricated micro-solid oxide fuel cell membranes. J Power Sources 194:119–129. doi: 10.1016/j.jpowsour.2009.03.048 CrossRefGoogle Scholar
  17. 17.
    Pergolesi D, Fabbri E, Traversa E (2010) Chemically stable anode-supported solid oxide fuel cells based on Y-doped barium zirconate thin films having improved performance. Electrochem Commun 12:977–980. doi: 10.1016/j.elecom.2010.05.005 CrossRefGoogle Scholar
  18. 18.
    Evans A, Martynczuk J, Stender D et al (2015) Low-temperature micro-solid oxide fuel cells with partially amorphous La0. 6Sr0. 4CoO3−δ Cathodes. Adv. Energy. doi: 10.1002/aenm.201400747 Google Scholar
  19. 19.
    Heiroth S, Frison R, Rupp JLM et al (2011) Crystallization and grain growth characteristics of yttria-stabilized zirconia thin films grown by pulsed laser deposition. Solid State Ion 191:12–23. doi: 10.1016/j.ssi.2011.04.002 CrossRefGoogle Scholar
  20. 20.
    Chang I, Paek JY, Cha SW (2015) Parametric study of Y-doped BaZrO3 thin film deposited via pulsed laser deposition. J Vac Sci Technol, A 33:021515. doi: 10.1116/1.4905775 CrossRefGoogle Scholar
  21. 21.
    Infortuna A, Harvey AS, Gauckler LJ (2008) Microstructures of CGO and YSZ thin films by pulsed laser deposition. Adv Funct Mater 18:127–135. doi: 10.1002/adfm.200700136 CrossRefGoogle Scholar
  22. 22.
    Chao C-C, Hsu C-M, Cui Y, Prinz FB (2011) Improved solid oxide fuel cell performance with nanostructured electrolytes. ACS Nano 5:5692–5696. doi: 10.1021/nn201354p CrossRefGoogle Scholar
  23. 23.
    Kerman K, Lai B-K, Ramanathan S (2011) Pt/Y0.16Zr0.84O1.92/Pt thin film solid oxide fuel cells: electrode microstructure and stability considerations. J Power Sources 196:2608–2614. doi: 10.1016/j.jpowsour.2010.10.068 CrossRefGoogle Scholar
  24. 24.
    Noh H-S, Park J-S, Son J-W et al (2009) Physical and microstructural properties of NiO- and Ni-YSZ composite thin films fabricated by pulsed-laser deposition at T≤ 700°C. J Am Ceram Soc 92:3059–3064. doi: 10.1111/j.1551-2916.2009.03362.x CrossRefGoogle Scholar
  25. 25.
    Noh H-S, Son J-W, Lee H et al (2010) Suppression of Ni agglomeration in PLD fabricated Ni-YSZ composite for surface modification of SOFC anode. J Eur Ceram Soc 30:3415–3423. doi: 10.1016/j.jeurceramsoc.2010.07.035 CrossRefGoogle Scholar
  26. 26.
    Noh H-S, Yoon KJ, Kim B-K et al (2014) The potential and challenges of thin-film electrolyte and nanostructured electrode for yttria-stabilized zirconia-base anode-supported solid oxide fuel cells. J Power Sources 247:105–111. doi: 10.1016/j.jpowsour.2013.08.072 CrossRefGoogle Scholar
  27. 27.
    Arrivé C, Delahaye T, Joubert O, Gauthier G (2013) Exsolution of nickel nanoparticles at the surface of a conducting titanate as potential hydrogen electrode material for solid oxide electrochemical cells. J Power Sources 223:341–348. doi: 10.1016/j.jpowsour.2012.09.062 CrossRefGoogle Scholar
  28. 28.
    Stange M, Denonville C, Larring Y et al (2013) Coating developments for metal-supported solid oxide fuel cells. ECS Trans 57:511–520. doi: 10.1149/05701.0511ecst CrossRefGoogle Scholar
  29. 29.
    Abràmoff MD, Magalhães PJ, Ram SJ (2004) Image processing with ImageJ. Biophotonics Int 11:36–42Google Scholar
  30. 30.
    Schneider CA, Rasband WS, Eliceiri KW (2012) NIH Image to ImageJ: 25 years of image analysis. Nat Methods 9:671–675CrossRefGoogle Scholar
  31. 31.
    Iguchi F, Sata N, Yugami H (2010) Proton transport properties at the grain boundary of barium zirconate based proton conductors for intermediate temperature operating SOFC. J Mater Chem 20:6265–6270. doi: 10.1039/C0JM00443J CrossRefGoogle Scholar
  32. 32.
    Serra JM, Meulenberg WA (2007) Thin-film proton BaZr0. 85Y0. 15O3 conducting electrolytes: toward an intermediate-temperature solid oxide fuel cell alternative. J Am Ceram Soc 90:2082–2089. doi: 10.1111/j.1551-2916.2007.01677.x CrossRefGoogle Scholar
  33. 33.
    Ricote S, Bonanos N, Manerbino A et al (2014) Effects of the fabrication process on the grain-boundary resistance in BaZr0. 9Y0. 1O3−δ. J Mater Chem A 2:16107–16115. doi: 10.1039/C4TA02848A CrossRefGoogle Scholar
  34. 34.
    Muecke UP, Akiba K, Infortuna A et al (2008) Electrochemical performance of nanocrystalline nickel/gadolinia-doped ceria thin film anodes for solid oxide fuel cells. Solid State Ion 178:1762–1768. doi: 10.1016/j.ssi.2007.10.002 CrossRefGoogle Scholar
  35. 35.
    Muecke UP, Graf S, Rhyner U, Gauckler LJ (2008) Microstructure and electrical conductivity of nanocrystalline nickel- and nickel oxide/gadolinia-doped ceria thin films. Acta Mater 56:677–687. doi: 10.1016/j.actamat.2007.09.023 CrossRefGoogle Scholar
  36. 36.
    Podpirka A, Balakrishnan V, Ramanathan S (2013) Heteroepitaxy and crystallographic orientation transition in La 1.875 Sr 0.125 NiO 4 thin films on single crystal SrTiO 3. J Mater Res 28:1420–1431. doi: 10.1557/jmr.2013.121 CrossRefGoogle Scholar
  37. 37.
    Viswanath B, Ko C, Ramanathan S (2011) Thickness-dependent orientation evolution in nickel thin films grown on yttria-stabilized zirconia single crystals. Philos Mag 91:4311–4323. doi: 10.1080/14786435.2011.608086 CrossRefGoogle Scholar
  38. 38.
    Thornton JA (1974) Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings. J Vac Sci Technol 11:666–670. doi: 10.1116/1.1312732 CrossRefGoogle Scholar
  39. 39.
    Plonczak P, Bieberle-Hütter A, Søgaard M et al (2011) Tailoring of LaxSr1-xCoyFe1-yO3−δ nanostructure by pulsed laser deposition. Adv Funct Mater 21:2764–2775. doi: 10.1002/adfm.201100251 CrossRefGoogle Scholar
  40. 40.
    Tsekouras G, Neagu D, Irvine JTS (2012) Step-change in high temperature steam electrolysis performance of perovskite oxide cathodes with exsolution of B-site dopants. Energy Environ Sci 6:256–266. doi: 10.1039/C2EE22547F CrossRefGoogle Scholar
  41. 41.
    Irvine JTS, Neagu D, Verbraeken MC et al (2016) Evolution of the electrochemical interface in high-temperature fuel cells and electrolysers. Nat Energy 1:15014. doi: 10.1038/nenergy.2015.14 CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  1. 1.Department of Chemistry, SMN/FERMiOUniversity of OsloOsloNorway
  2. 2.SINTEFOsloNorway
  3. 3.Solmates BVEnschedeThe Netherlands

Personalised recommendations