Skip to main content

Advertisement

Log in

Transport and field emission properties of buckypapers obtained from aligned carbon nanotubes

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We produce 120-µm-thick buckypapers from aligned carbon nanotubes. Transport characteristics evidence ohmic behavior in a wide temperature range nonlinearity appearing in the current–voltage curves only close to 4.2 K. The temperature dependence of the conductance shows that transport is mostly due to thermal fluctuation-induced tunneling, although to explain the whole temperature range from 4.2 to 430 K a further linear contribution is necessary. The field emission properties are measured by means of a nano-controlled metallic tip acting as collector electrode to access local information about buckypaper properties from areas as small as 1 µm2. Emitted current up to 10−5 A and turn-on field of about 140 V/µm are recorded. Long operation, stability and robustness of emitters have been probed by field emission intensity monitoring for more than 12 h at pressure of 10−6 mbar. Finally, no tuning of the emitted current was observed for in-plane applied currents in the buckypaper.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+
from $39.99 /Month
  • Starting from 10 chapters or articles per month
  • Access and download chapters and articles from more than 300k books and 2,500 journals
  • Cancel anytime
View plans

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58. doi:10.1038/354056a0

    Article  Google Scholar 

  2. Saito Y, Uemura S (2000) Field emission from carbon nanotubes and its application to electron sources. Carbon 38:169–182. doi:10.1016/S0008-6223(99)00139-6

    Article  Google Scholar 

  3. Wang QH, Yan M, Chang RPH (2001) Flat panel display prototype using gated carbon nanotube field emitters. Appl Phys Lett 78:1294. doi:10.1063/1.1351847

    Article  Google Scholar 

  4. Zhang J, Yang G, Cheng Y, Gao B, Qiu Q, Lee YZ, Lu JP, Zhou O (2005) Stationary scanning X-ray source based on carbon nanotube field emitters. Appl Phys Lett 86:184104. doi:10.1063/1.1923750

    Article  Google Scholar 

  5. Liu Z, Yang G, Lee YZ, Bordelon D, Lu J, Zhou O (2006) Carbon nanotube based microfocus field emission X-ray source for microcomputed tomography. Appl Phys Lett 89:103111. doi:10.1063/1.2345829

    Article  Google Scholar 

  6. Teo KBK, Minoux E, Hudanski L, Peauger F, Schnell J-P, Gangloff L, Legagneux P, Dieumegard D, Amaratunga GAJ, Milne WI (2005) Microwave devices: carbon nanotubes as cold cathodes. Nature 437:968. doi:10.1038/437968a

    Article  Google Scholar 

  7. Kim D, Bourée J-E, Kim SY (2009) Calculation of the field enhancement for a nanotube array and its emission properties. J Appl Phys 105:84315. doi:10.1063/1.3091282

    Article  Google Scholar 

  8. Shahi M, Gautam S, Shah PV, Jha P, Kumar P, Rawat JS, Chaudhury PK, Tandon RP (2013) Effect of purity, edge length, and growth area on field emission of multi-walled carbon nanotube emitter arrays. J Appl Phys 113:204304. doi:10.1063/1.4807916

    Article  Google Scholar 

  9. Giubileo F, Di Bartolomeo A, Scarfato A, Iemmo L, Bobba F, Passacantando M, Santucci S, Cucolo AM (2009) Local probing of the field emission stability of vertically aligned multi-walled carbon nanotubes. Carbon 47:1074–1080. doi:10.1016/j.carbon.2008.12.035

    Article  Google Scholar 

  10. Di Bartolomeo A, Scarfato A, Giubileo F, Bobba F, Biasiucci M, Cucolo AM, Santucci S, Passacantando M (2007) A local field emission study of partially aligned carbon-nanotubes by atomic force microscope probe. Carbon 45:2957–2971. doi:10.1016/j.carbon.2007.09.049

    Article  Google Scholar 

  11. Liu H, Shi Y, Chen B, Li X, Ding Y, Lu B (2012) Effect of patterned and aligned carbon nanotubes on field emission properties. Vacuum 86:933–937. doi:10.1016/j.vacuum.2011.07.047

    Article  Google Scholar 

  12. Giubileo F, Di Bartolomeo A, Sarno M, Altavilla C, Santandrea S, Ciambelli P, Cucolo AM (2012) Field emission properties of as-grown multiwalled carbon nanotube films. Carbon 50:163–169. doi:10.1016/j.carbon.2011.08.015

    Article  Google Scholar 

  13. Chen Y, Miao H-Y, Lin RJ, Zhang M, Liang R, Zhang C, Wang B (2010) Emitter spacing effects on field emission properties of laser-treated single-walled carbon nanotube buckypapers. Nanotechnology 21:495702. doi:10.1088/0957-4484/21/49/495702

    Article  Google Scholar 

  14. Rai P, Mohapatra DR, Hazra KS, Misra DS, Tiwari SP (2008) Nanotip formation on a carbon nanotube pillar array for field emission application. Appl Phys Lett 93:131921. doi:10.1063/1.2996283

    Article  Google Scholar 

  15. Weng T-W, Lai Y-H, Lee K-Y (2008) Area effect of patterned carbon nanotube bundle on field electron emission characteristics. Appl Surf Sci 254:7755–7758. doi:10.1016/j.apsusc.2008.02.020

    Article  Google Scholar 

  16. Seelaboyina R, Boddepalli S, Noh K, Jeon M, Choi W (2008) Enhanced field emission from aligned multistage carbon nanotube emitter arrays. Nanotechnology 19:65605. doi:10.1088/0957-4484/19/6/065605

    Article  Google Scholar 

  17. Fischer JE, Zhou W, Vavro J, Llaguno MC, Guthy C, Haggenmueller R, Casavant MJ, Walters DE, Smalley RE (2003) Magnetically aligned single wall carbon nanotube films: preferred orientation and anisotropic transport properties. J Appl Phys 93:2157–2163. doi:10.1063/1.1536733

    Article  Google Scholar 

  18. Knapp W, Schleussner D (2003) Field-emission characteristics of carbon buckypaper. J Vac Sci Technol B Microelectron and Nanometer Struct 21:557–561. doi:10.1116/1.1527598

    Article  Google Scholar 

  19. Roy S, Bajpai R, Soin N, Bajpai P, Hazra KS, Kulshrestha N, Roy SS, McLaughlin JA, Misra DS (2011) Enhanced field emission and improved supercapacitor obtained from plasma-modified bucky paper. Small 7:688–693. doi:10.1002/smll.201002330

    Article  Google Scholar 

  20. Kaempgen M, Chan CK, Ma J, Cui Y, Gruner G (2009) Printable thin film supercapacitors using single-walled carbon nanotubes. Nano Lett 9:1872–1876. doi:10.1021/nl8038579

    Article  Google Scholar 

  21. Bonanni A, Esplandiu MJ, del Valle M (2009) Impedimetric genosensors employing COOH-modified carbon nanotube screen-printed electrodes. Biosens Bioelectron 24:2885–2891. doi:10.1016/j.bios.2009.02.023

    Article  Google Scholar 

  22. Behabtu N, Green M, Pasquali M (2008) Carbon nanotube-based neat fibers. Nano Today 3:24–34. doi:10.1016/S1748-0132(08)70062-8

    Article  Google Scholar 

  23. Baughman RH (1999) Carbon nanotube actuators. Science 284:1340–1344. doi:10.1126/science.284.5418.1340

    Article  Google Scholar 

  24. Kakade BA, Pillai VK, Late DJ, Chavan PG, Sheini FJ, More MA, Joag DS (2010) High current density, low threshold field emission from functionalized carbon nanotube bucky paper. Appl Phys Lett 97:73102. doi:10.1063/1.3479049

    Article  Google Scholar 

  25. Passacantando M, Grossi V, Santucci S (2012) High photocurrent from planar strips of vertical and horizontal aligned multi wall carbon nanotubes. Appl Phys Lett 100:163119. doi:10.1063/1.4704569

    Article  Google Scholar 

  26. Heise HM, KucKUK R, Ojha AK, Srivastava A, Srivastava V, Asthana B (2008) Characterization of carbonaceous materials using Raman spectroscopy: a comparison of carbon nanotube filters, single- and multi-walled nanotubes, graphitised porous carbon and graphite. J Raman Spectrosc 40:344–353. doi:10.1002/jrs.2120

    Article  Google Scholar 

  27. Song SN, Wang XK, Chang RPH, Ketterson JB (1994) Electronic properties of graphite nanotubules from galvanomagnetic effects. Phys Rev Lett 72:697–700. doi:10.1103/PhysRevLett.72.697

    Article  Google Scholar 

  28. Langer L, Stockman L, Heremans JP, Bayot V, Olk CH, Van Haesendonck C, Bruynseraede Y, Issi J-P (1994) Electrical resistance of a carbon nanotube bundle. J Mater Res 9:927–932. doi:10.1557/JMR.1994.0927

    Article  Google Scholar 

  29. deHeer WA, Bacsa WS, Chatelain A, Gerfin T, Humphrey-Baker R, Forro L, Ugarte D (1995) Aligned carbon nanotube films: production and optical and electronic properties. Science 268:845–847. doi:10.1126/science.268.5212.845

    Article  Google Scholar 

  30. Di Bartolomeo A, Sarno M, Giubileo F, Altavilla C, Iemmo L, Piano S, Bobba F, Longobardi M, Scarfato A, Sannino D, Cucolo AM, Ciambelli P (2009) Multiwalled carbon nanotube films as small-sized temperature sensors. J Appl Phys 105:64518. doi:10.1063/1.3093680

    Article  Google Scholar 

  31. Fischer JE, Dai H, Thess A, Lee R, Hanjani NM, Dehaas DL, Smalley RE (1997) Metallic resistivity in crystalline ropes of single-wall carbon nanotubes. Phys Rev B 55:R4921–R4924. doi:10.1103/PhysRevB.55.R4921

    Article  Google Scholar 

  32. Langer L, Bayot V, Grivei E, Issi J-P, Heremans JP, Olk CH, Stockman L, Van Haesendonck C, Bruynseraede Y (1996) Quantum transport in a multiwalled carbon nanotube. Phys Rev Lett 76:479–482. doi:10.1103/PhysRevLett.76.479

    Article  Google Scholar 

  33. Kasumov AY, Khodos II, Ajayan PM, Colliex C (1996) Electrical resistance of a single carbon nanotube. Europhys Lett (EPL) 34:429–434. doi:10.1209/epl/i1996-00474-0

    Article  Google Scholar 

  34. Mott NF (1967) Electrons in disordered structures. Adv Phys 16:49–144. doi:10.1080/00018736700101265

    Article  Google Scholar 

  35. Sheng P (1980) Fluctuation-induced tunneling conduction in disordered materials. Phys Rev B 21:2180–2195. doi:10.1103/PhysRevB.21.2180

    Article  Google Scholar 

  36. Zhou W (2004) Single wall carbon nanotube fibers extruded from super-acid suspensions: preferred orientation, electrical, and thermal transport. J Appl Phys 95:649–655. doi:10.1063/1.1627457

    Article  Google Scholar 

  37. Kim GT, Jhang SH, Park JG, Park YW, Roth S (2001) Non-ohmic current–voltage characteristics in single-wall carbon nanotube network. Synth Met 117:123–126. doi:10.1016/S0379-6779(00)00551-8

    Article  Google Scholar 

  38. Simsek Y, Ozyuzer L, Seyhan AT, Tanoglu M, Schulte K (2007) Temperature dependence of electrical conductivity in double-wall and multi-wall carbon nanotube/polyester nanocomposites. J Mater Sci 42:9689–9695. doi:10.1007/s10853-007-1943-9

    Article  Google Scholar 

  39. Grigorian L, Williams KA, Fang S, Sumanasekera GU, Loper AL, Dickey EC, Pennycook SJ, Eklund PC (1998) Reversible Intercalation of charged iodine chains into carbon nanotube ropes. Phys Rev Lett 80:5560–5563. doi:10.1103/PhysRevLett.80.5560

    Article  Google Scholar 

  40. Kaiser B, Park YW, Kim GT, Choi ES, Düsberg G, Roth S (1999) Electronic transport in carbon nanotube ropes and mats. Synth Met 103:2547–2550. doi:10.1016/S0379-6779(98)00222-7

    Article  Google Scholar 

  41. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56. doi:10.1038/382054a0

    Article  Google Scholar 

  42. Zhou F, Lu L, Zhang DL, Pan ZW, Xie SS (2004) Linear conductance of multiwalled carbon nanotubes at high temperatures. Solid State Commun 129:407–410. doi:10.1016/j.ssc.2003.09.040

    Article  Google Scholar 

  43. Liu K, Avouris P, Martel R, Hsu WK (2001) Electrical transport in doped multiwalled carbon nanotubes. Phys Rev B. doi:10.1103/PhysRevB.63.161404

    Google Scholar 

  44. Buitelaar MR, Bachtold A, Nussbaumer T, Iqbal M, Schönenberger C (2002) Multiwall carbon nanotubes as quantum dots. Phys Rev Lett. doi:10.1103/PhysRevLett.88.156801

    Google Scholar 

  45. Kim J, Kim J-R, Lee J-O, Park JW, So HM, Kim N, Kang K, Yoo K-H, Kim J-J (2003) Fano resonance in crossed carbon nanotubes. Phys Rev Lett. doi:10.1103/PhysRevLett.90.166403

    Google Scholar 

  46. Gao B, Glattli DC, Plaçais B, Bachtold A (2006) Cotunneling and one-dimensional localization in individual disordered single-wall carbon nanotubes: temperature dependence of the intrinsic resistance. Phys Rev B. doi:10.1103/PhysRevB.74.085410

    Google Scholar 

  47. Zeldov E, Amer NM, Koren G, Gupta A, McElfresh MW, Gambino RJ (1990) Flux creep characteristics in high-temperature superconductors. Appl Phys Lett 56:680–682. doi:10.1063/1.103310

    Article  Google Scholar 

  48. Salvato M, Cirillo M, Lucci M, Orlanducci S, Ottaviani I, Terranova ML, Toschi F (2008) Charge transport and tunneling in single-walled carbon nanotube bundles. Phys Rev Lett. doi:10.1103/PhysRevLett.101.246804

    Google Scholar 

  49. Ksenevich VK, Odzaev VB, Martunas Z, Seliuta D, Valusis G, Galibert J, Melnikov AA, Wieck AD, Novitski D, Kozlov ME, Samuilov VA (2008) Localization and nonlinear transport in single walled carbon nanotube fibers. J Appl Phys 104:73724. doi:10.1063/1.2996036

    Article  Google Scholar 

  50. Salvato M, Cirillo M, Lucci M, Orlanducci S, Ottaviani I, Terranova ML, Toschi F (2012) Macroscopic effects of tunnelling barriers in aggregates of carbon nanotube bundles. J Phys D Appl Phys 45:105306. doi:10.1088/0022-3727/45/10/105306

    Article  Google Scholar 

  51. Fowler RH, Nordheim L (1928) Electron emission in intense electric fields. Proc R Soc A Math Phys Eng Sci 119:173–181. doi:10.1098/rspa.1928.0091

    Article  Google Scholar 

  52. Passacantando M, Bussolotti F, Santucci S, Di Bartolomeo A, Giubileo F, Iemmo L, Cucolo AM (2008) Field emission from a selected multiwall carbon nanotube. Nanotechnology 19:395701. doi:10.1088/0957-4484/19/39/395701

    Article  Google Scholar 

  53. Santandrea S, Giubileo F, Grossi V, Santucci S, Passacantando M, Schroeder T, Lupina G, Di Bartolomeo A (2011) Field emission from single and few-layer graphene flakes. Appl Phys Lett 98:163109. doi:10.1063/1.3579533

    Article  Google Scholar 

  54. Di Bartolomeo A, Passacantando M, Niu G, Schlykow V, Lupina G, Giubileo F, Schroeder T (2016) Observation of field emission from GeSn nanoparticles epitaxially grown on silicon nanopillar arrays. Nanotechnology 27:485707. doi:10.1088/0957-4484/27/48/485707

    Article  Google Scholar 

  55. Cao G, Liu W, Cao M, Li X, Zhang A, Wang X, Chen B (2016) Improve the transconductance of a graphene field-effect transistor by folding graphene into a wedge. J Phys D Appl Phys 49:275108. doi:10.1088/0022-3727/49/27/275108

    Article  Google Scholar 

  56. Di Bartolomeo A, Giubileo F, Iemmo L, Romeo F, Russo S, Unal S, Passacantando M, Grossi V, Cucolo AM (2016) Leakage and field emission in side-gate graphene field effect transistors. Appl Phys Lett 109:23510. doi:10.1063/1.4958618

    Article  Google Scholar 

  57. Di Bartolomeo A, Giubileo F, Romeo F, Sabatino P, Carapella G, Iemmo L, Schroeder T, Lupina G (2015) Graphene field effect transistors with niobium contacts and asymmetric transfer characteristics. Nanotechnology 26:475202. doi:10.1088/0957-4484/26/47/475202

    Article  Google Scholar 

  58. Di Bartolomeo A, Santandrea S, Giubileo F, Romeo F, Petrosino M, Citro R, Barbara P, Lupina G, Schroeder T, Rubino A (2013) Effect of back-gate on contact resistance and on channel conductance in graphene-based field-effect transistors. Diam Relat Mater 38:19–23. doi:10.1016/j.diamond.2013.06.002

    Article  Google Scholar 

  59. Di Bartolomeo A, Giubileo F, Santandrea S, Romeo F, Citro R, Schroeder T, Lupina G (2011) Charge transfer and partial pinning at the contacts as the origin of a double dip in the transfer characteristics of graphene-based field-effect transistors. Nanotechnology 22:275702. doi:10.1088/0957-4484/22/27/275702

    Article  Google Scholar 

  60. Schwierz F (2010) Graphene transistors. Nat Nanotechnol 5:487–496. doi:10.1038/nnano.2010.89

    Article  Google Scholar 

  61. Wenger C, Kitzmann J, Wolff A, Fraschke M, Walczyk C, Lupina G, Mehr W, Junige M, Albert M, Bartha JW (2015) Graphene based electron field emitter. J Vac Sci Technol B Nanotechnol Microelectron Mater Process Meas Phenom 33:01A109. doi:10.1116/1.4905937

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to F. Giubileo.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giubileo, F., Iemmo, L., Luongo, G. et al. Transport and field emission properties of buckypapers obtained from aligned carbon nanotubes. J Mater Sci 52, 6459–6468 (2017). https://doi.org/10.1007/s10853-017-0881-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0881-4

Keywords

Profiles

  1. A. Di Bartolomeo