Skip to main content

Bioactive glasses functionalized with polyphenols: in vitro interactions with healthy and cancerous osteoblast cells

Abstract

Bioactive glasses are widely studied as biomaterials for bone contact applications. In this research work, the opportunity to modify the surface of a bioactive glass with polyphenols (gallic acid, and natural polyphenols extracted from red grape skin and green tea leaves) has been investigated in order to induce a selective anti-tumor activity in vitro. The presence of surface grafted molecules has been optically proved by fluorescence microscopy exploiting their auto-fluorescence. Direct and indirect cytotoxicity assays have been performed with human bone osteosarcoma cells (U2OS) and human fetal pre-osteoblasts (hFOB), as well as the quantification of oxygen and nitrogen reactive species (RONS) engendered from cells in response to the materials. Finally, the DNA damage of U2OS cells upon contact with the bioactive glass has been evaluated in order to verify any selective cytotoxic activity of functionalized materials against cancer cells. Results showed a selective cytotoxic activity of functionalized bioactive glasses toward osteosarcoma cells that was particularly evident when cells were cultivated directly onto glasses surface. Moreover, the presence of grafted polyphenols increased the RONS production and induced a permanent DNA damage on the U2SOS cells while they promote a certain anti-inflammatory action toward hFOB. These preliminary results suggest polyphenols grafted bioactive glasses as promising material for bone substitution in cancer treatment.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

References

  1. Hench LL (2006) The story of Bioglass®. J Mater Sci Mater Med 17:967–978

    Article  Google Scholar 

  2. Hench LL (2009) Genetic design of bioactive glass. J Eur Ceram Soc 29:1257–1265

    Article  Google Scholar 

  3. Hench LL, Roki N, Fenn MB (2014) Bioactive glasses: importance of structure and properties in bone regeneration. J Mol Struct 1073:24–30

    Article  Google Scholar 

  4. Miguez-Pecheco V, Hench LL, Boccaccini AR (2015) Bioactive glasses beyond bone and teeth: emerging applications in contact with soft tissues. Acta Biomater 13:1–15

    Article  Google Scholar 

  5. Rabiee SM, Nazparvar N, Azizian M, Vashaee D, Tayebi L (2015) Effect of ion substitution on properties of bioactive glasses: a review. Ceram Int 41:2741–2751

    Article  Google Scholar 

  6. Baino F, Novajra G, Miguez-Pacheco V, Boccaccini AR, Vitale-Brovarone C (2016) Bioactive glasses: special applications outside the skeletal system. J Non-cryst Solids 432:15–30

    Article  Google Scholar 

  7. Vernè E, Vitale-Brovarone C, Bui E, Bianchi CL, Boccaccini AR (2009) Surface functionalization of bioactive glasses. J Biomed Mater Res 90A:981–992

    Article  Google Scholar 

  8. Vernè E, Ferraris S, Vitale-Brovarone C, Spriano S, Bianchi CL, Naldoni A, Morra M, Cassinelli C (2010) Alkaline phosphatase grafting on bioactive glasses and glass–ceramics. Acta Biomater 6:229–240

    Article  Google Scholar 

  9. Cazzola M, Corazzari I, Prenesti E, Bertone E, Vernè E, Ferraris S (2016) Bioactive glass coupling with natural polyphenols: surface modification, bioactivity and anti-oxidant ability. Appl Surf Sci 367:237–248

    Article  Google Scholar 

  10. Zhang X, Ferraris S, Prenesti E, Vernè E (2013) Surface functionalization of bioactive glasses with natural molecules of biological significance. Part I: gallic acid as model molecule. Appl Surf Sci 287:329–340

    Article  Google Scholar 

  11. Zhang X, Ferraris S, Prenesti E, Vernè E (2013) Surface functionalization of bioactive glasses with natural molecules of biological significance. Part II: grafting of polyphenols extracted from grape skin. Appl Surf Sci 287:341–348

    Article  Google Scholar 

  12. Ferraris S, Zhang X, Prenesti E, Corazzari I, Turci F, Tomatis M, Vernè E (2016) Gallic acid grafting to a ferrimagnetic bioactive glass–ceramic. J Non-cryst Solids 432:167–175

    Article  Google Scholar 

  13. Saiko P, Szakmary A, Jaeger W, Szekeres T (2008) Resveratrol and its analogs: defense against cancer, coronary disease and neurodegenerative maladies or just a fad? Mutat Res 658:68–94

    Article  Google Scholar 

  14. Piotrowska H, Kucinska M, Murias M (2012) Biological activity of piceatannol: leaving the shadow of resveratrol. Mutat Res 750:60–82

    Article  Google Scholar 

  15. Kang NJ, Shin SH, Lee HJ, Lee KW (2011) Polyphenols as small molecular inhibitors of signaling cascades in carcinogenesis. Pharmacol Therapeut 130:310–324

    Article  Google Scholar 

  16. Petti S, Scully C (2009) Polyphenols, oral health and disease: a review. J Dent 37:413–423

    Article  Google Scholar 

  17. Lewandowska H, Kalinowska M, Lewandowski W, Stepkowski TM, Brzoska K (2016) The role of natural polyphenols in cell signaling and cytoprotection against cancer development. J Nutr Biochem 32:1–19

    Article  Google Scholar 

  18. Nowshehri JA, Bhat ZA, Shah MY (2015) Blessing in disguide: bio-functional benefits of grape seed extracts. Food Res Int 77:333–348

    Article  Google Scholar 

  19. Ullah N, Ahmad M, Aslam A, Tahir MA, Aftab M, Bibi N, Ahmad S (2016) Green tea phytocompounds as anticancer: a review. Asian Pac J Trop Dis 6:330–336

    Article  Google Scholar 

  20. Khan N, Mukhtar H (2008) Multitargeted therapy of cancer by green tea polyphenols. Cancer Lett 269:269–280

    Article  Google Scholar 

  21. Schuck AG, Weisburg JH, Esan H, Robin EF, Bersson AR, Weitschner JR, Lahasky T, Zuckerbraun HL, Babich H (2013) Cytotoxic and proapoptotic activities of gallic acid to human oral cancer HSC-2 cells. Oxid Antioxid Med Sci 2:265–274

    Article  Google Scholar 

  22. Sharma A, Gautam SP, Gupta A (2011) Surface modified dendrimers: synthesis and characterization for cancer targeted drug delivery. Bioinorg Med Chem 19:3341–3346

    Article  Google Scholar 

  23. Ball V, Meyer F (2016) Deposition kinetics and electrochemical properties of tannic acid on gold and silica. Colloid Surf A 491:12–17

    Article  Google Scholar 

  24. Sileika TS, Barrett DG, Zhang R, Lau KHA, Messersmith PB (2013) Colorless multifunctional coatings inspired by polyphenols found in tea, chocolate, and wine. Angew Chem Int Ed 52:10766–10770

    Article  Google Scholar 

  25. Nam JB, Ryu JH, Kim JW, Chang IS, Suh KD (2005) Stabilization of resveratrol immobilized in monodisperse cyano-functionalized porous polymeric microspheres. Polymer 46:8956–8963

    Article  Google Scholar 

  26. Bae JH, Shanmugharaj AM, Noh WH, Choi WS, Ryu SH (2007) Surface chemical functionalized single-walled carbon nanotube with anchored phenol structures: physical and chemical characterization. Appl Surf Sci 253:4150–4155

    Article  Google Scholar 

  27. Peng H, Xiong H, Li J, Xie M, Liu Y, Bai C, Chen L (2010) Vanillin cross-linked chitosan microspheres for controlled release of resveratrol. Food Chem 121:23–28

    Article  Google Scholar 

  28. Kong X, Jin L, Wei M, Duan X (2010) Antioxidant drugs intercalated into layered double hydroxide: structure and in vitro release. Appl Clay Sci 49:324–329

    Article  Google Scholar 

  29. Das S, Ng KY (2010) Colon-specific delivery of resveratrol: optimization of multi-particulate calcium-pectinate carrier. Int J Pharm 385:20–28

    Article  Google Scholar 

  30. Yu SH, Mi FL, Pang JC, Jiang SC, Kuo TH, Wu SJ, Shyu S (2011) Preparation and characterization of radical and pH-responsive chitosan-gallic acid conjugate drug carriers. Carbohyd Polym 84:794–802

    Article  Google Scholar 

  31. Cho YS, Kim SK, Ahn CB, JeJ Y (2011) Preparation, characterization and antioxidant properties of gallic acid-grafted-chitosans. Carbohyd Polym 83:1617–1622

    Article  Google Scholar 

  32. Bozic M, Gorgieva S, Kokol V (2012) Laccase-mediated functionalization of chitosan by caffeic and gallic acids for modulating antioxidant and antimicrobial properties. Carbohyd Polym 87:2388–2398

    Article  Google Scholar 

  33. Francesko A, Soares da Costa D, Reis RL, Pashkuleva I, Tzanov T (2013) Functional biopolymer-based matrices for modulation of chronic wound enzyme activities. Acta Biomater 9:5216–5225

    Article  Google Scholar 

  34. Rawat K, Saxena A, Verma AK, Vohra R, Bohidar HB (2014) Potential of gallic acid loaded polysaccharide-protein (Agar-Gelatin) co-hydrogels in wound healing. J Pharma Res 3:14–17

    Google Scholar 

  35. Forte L, Torricelli P, Boanini E, Gazzano M, Rubini K, Fini M, Bigi A (2016) Antioxidant and bone repair properties of quesrcetin-functionalized hydroxyapatite: an in vitro osteoblast-osteoclast-endothelial cell co-culture study. Acta Biomater 32:298–308

    Article  Google Scholar 

  36. Varoni EM, Rimondini L, Iriti M (2012) Plant products for innovative biomaterials in dentistry. Coatings 2:179–194

    Article  Google Scholar 

  37. Malavasi G, Ferrari E, Lusvardi G, Aina V, Fantini F, Morterra C, Pignedoli F, Saladini M, Menabue L (2011) The role of coordination chemistry in the development of innovative gallium-based bioceramics: the case of curcumin. J Mater Chem 21:5027–5037

    Article  Google Scholar 

  38. Dziadek M, Dziadek K, Zagrajczuk B, Menaszek E, Cholewa-Kowalska K (2016) Poly(ε-caprolactone)/bioactive glass composites enriched with polyphenols extracted from sage (Salvia officinalis L.). Mater Lett 183:386–390

    Article  Google Scholar 

  39. Lavid N, Schwartz A, Yarden O, Tel-Or E (2001) The involvement of polyphenols and peroxidase activities in heavy-metal accumulation by epidermal glands of the waterlily (Nymphaeaceae). Planta 212:323–331

    Article  Google Scholar 

  40. Verné E, Ferraris S, Vitale-Brovarone C, Cochis A, Rimondini L (2014) Bioactive glass functionalized with alkaline phosphatase stimulates bone extracellular matrix deposition and calcification in vitro. Appl Surf Sci 313:372–381

    Article  Google Scholar 

  41. Jebahi S, Oudadesse H, El Feki H, Rebai T, Keskes H, Pellen P, El Feki A (2012) Antioxidative/oxidative effects of strontium-doped bioactive glass as bone graft. In vivo assays in ovariectomised rats. J Appl Biomed 10:195–209

    Article  Google Scholar 

  42. Urruticoechea A, Alemany R, Balart J, Villanueva A, Viñals F, Capellá G (2010) Recent advances in cancer therapy: an overview. Curr Pharm Des 16:3–10

    Article  Google Scholar 

  43. Köritzer J, Boxhammer V, Schäfer A, Shimizu T, Klämpfl TG, Li YF, Welz C, Schwenk-Zieger S, Morfill GE, Zimmermann JL, Schlegel J (2013) Restoration of sensitivity in chemo-resistant glioma cells by cold atmospheric plasma. PLoS ONE 8:1–10

    Article  Google Scholar 

  44. Cheng X, Sherman J, Murphy W, Ratovitski E, Canady J, Keidar M (2014) The effect of tuning cold plasma composition on glioblastoma cell viability. PLoS ONE 9:1–9

    Google Scholar 

  45. Yan D, Talbot A, Nourmohammadi N, Sherman JH, Cheng X, Keidar M (2015) Toward understanding the selective anticancer capacity of cold atmospheric plasma—a model based on aquaporins (review). Biointerphases 10:04080101–04080113

    Article  Google Scholar 

  46. Verma S, Singh A, Mishra A (2003) Gallic acid: molecular rival of cancer. Environ Toxicol Pharmacol 35:473–485

    Article  Google Scholar 

  47. Athar M, Back JH, Kopelovich L, Bickers DR, Kim AL (2009) Multiple molecular targets of resveratrol: anti-carcinogenic mechanisms. Arch Biochem Biophys 486:95–102

    Article  Google Scholar 

  48. Li Y, Bäckesjö C, Haldosén L, Lindgren U (2009) Resveratrol inhibits proliferation and promotes apoptosis of osteosarcoma cells. Eur J Pharmacol 609:13–18

    Article  Google Scholar 

  49. Araújo JR, Gonçalves P, Martel F (2011) Chemopreventive effect of dietary polyphenols in colorectal cancer cell lines. Nutr Res 31:77–87

    Article  Google Scholar 

  50. Sajilata MG, Bajaj PR, Singhal RS (2008) Tea polyphenols as nutraceuticals. Compr Rev Food Sci Food Saf 7:229–254

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Ferraris.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

E. Prenesti, L. Rimondini and S. Ferraris have co-shared authorship.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cazzola, M., Vernè, E., Cochis, A. et al. Bioactive glasses functionalized with polyphenols: in vitro interactions with healthy and cancerous osteoblast cells. J Mater Sci 52, 9211–9223 (2017). https://doi.org/10.1007/s10853-017-0872-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0872-5

Keywords