Skip to main content

Equal channel angular pressing of a TWIP steel: microstructure and mechanical response

Abstract

A Fe–20.1Mn–1.23Si–1.72Al–0.5C TWIP steel with ultrafine grain structure was successfully processed through equal channel angular pressing (ECAP) at warm temperature up to four passes following the B C route. The microstructure evolution was characterized by electron backscattered diffraction to obtain the grain maps, which revealed an obvious reduction in grain size, as well as a decrease in the twin fraction, with increasing number of ECAP passes. The texture evolution during ECAP was analyzed by orientation distribution function. The results show that the annealed material presents brass (B) as dominant component. After ECAP, the one pass sample presents A 1* and A 2* as the strongest components, while the two passes and four passes samples change gradually toward \( B/\bar{B} \) components. TEM analysis shows that all samples present twins. The twin thickness is reduced with increasing the number of ECAP passes. Nano-twins, as a result of secondary twinning, are also observed in the one and two passes samples. In the four passes sample, the microstructure is extensively refined by the joint action of ultrafine subgrains, grains and twins. The mechanical behavior was studied by tensile samples, and it was found that the yield strength and the ultimate tensile strength are significantly enhanced at increasing number of ECAP passes. Although the ductility and strain hardening capability are reduced with ECAP process, the present TWIP steel shows significant uniform deformation periods with positive work hardening rates.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14

References

  1. 1

    Soulami A, Choi KS, Shen YF, Liu WN, Sun X, Khaleel MA (2011) On deformation twinning in a 17.5% Mn–TWIP steel: a physically based phenomenological model. Mater Sci Eng A 528:1402–1408

    Article  Google Scholar 

  2. 2

    Frommeyer G, Brux U, Neumann P (2003) Supra-ductile and high-strength manganese-TRIP/TWIP steels for high energy absorption purposes. ISIJ Int 43:438–446

    Article  Google Scholar 

  3. 3

    Grassel O, Kruger L, Frommeyer G, Meyer LW (2000) High strength Fe–Mn–(Al, Si) TRIP/TWIP steels development-properties-application. Int J Plast 16:1391–1409

    Article  Google Scholar 

  4. 4

    Vercammen S, Blanpai B, Cooman BC, Wollants P (2004) Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning. Acta Mater 52:2005–2012

    Article  Google Scholar 

  5. 5

    Allain S, Chateau JP, Bouaziz O, Migot S, Guelton N (2004) Correlations between the calculated stacking fault energy and the plasticity mechanisms in Fe–Mn–C alloys. Mater Sci Eng A387–389:158–162

    Article  Google Scholar 

  6. 6

    Bouaziz O, Guelton N (2001) Modelling of TWIP effect on work-hardening. Mater Sci Eng A319–321:246–249

    Article  Google Scholar 

  7. 7

    Shiekhelsouk MN, Favier V, Inal K, Cherkaoui M (2009) Modelling the behaviour of polycrystalline austenitic steel with twinning-induced plasticity effect. Int J Plast 25:105–133

    Article  Google Scholar 

  8. 8

    Rahman KM, Vorontsov VA, Dye D (2015) The effect of grain size on the twin initiation stress in a TWIP steel. Acta Mater 89:247–257

    Article  Google Scholar 

  9. 9

    Ueji R, Tsuchida N, Terada D, Tsuji N, Tanaka Y, Takemura A, Kunishige K (2008) Tensile properties and twinning behavior of high manganese austenitic steel with fine-grained structure. Scr Mater 59:963–966

    Article  Google Scholar 

  10. 10

    Danaf EE, Kalidindi SR, Doherty RD (2001) Influence of deformation path on the strain hardening behavior and microstructure evolution in low SFE FCC metals. Int J Plast 17:1245–1265

    Article  Google Scholar 

  11. 11

    Tewary NK, Ghosh SK, Bera S, Chakrabarti D, Chatterjee S (2014) Influence of cold rolling on microstructure, texture and mechanical properties of low carbon high Mn TWIP steel. Mater Sci Eng A 615:405–415

    Article  Google Scholar 

  12. 12

    Bouaziz O, Allain S, Scott C (2008) Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scr Mater 58:484–487

    Article  Google Scholar 

  13. 13

    Matoso MS, Figueiredo RB, Kawasaki M, Santos DB, Langdon TG (2012) Processing a twinning-induced plasticity steel by high-pressure torsion. Scr Mater 67:649–652

    Article  Google Scholar 

  14. 14

    Abramova MM, Enikeev NA, Kim JG, Valiev RZ, Karavaeva MV, Kim HS (2016) Structural and phase transformation in a TWIP steel subjected to high pressure torsion. Mater Lett 166:321–324

    Article  Google Scholar 

  15. 15

    Bagherpour E, Reihanian M, Ebrahimi R (2012) On the capability of severe plastic deformation of twining induced plasticity (TWIP) steel. Mater Des 36:391–395

    Article  Google Scholar 

  16. 16

    Timokhina IB, Medvedev A, Lapovok R (2014) Severe plastic deformation of a TWIP steel. Mater Sci Eng A 593:163–169

    Article  Google Scholar 

  17. 17

    Haase C, Kremer O, Hu WP, Ingendahl T, Lapovok R, Molodov DA (2016) Equal-channel angular pressing and annealing of a twinning-induced plasticity steel: microstructure, texture, and mechanical properties. Acta Mater 107:239–253

    Article  Google Scholar 

  18. 18

    Saha R, Ueji R, Tsuji N (2013) Fully recrystallized nanostructure fabricated without severe plastic deformation in high-Mn austenitic steel. Scr Mater 68(10):813–816

    Article  Google Scholar 

  19. 19

    Bouaziz O, Allain S, Scott CP, Cugy P, Barbier D (2011) High manganese austenitic twinning induced plasticity steels: A review of the microstructure properties relationships. Curr. Opin Solid State Mater Sci 15:141–168

    Article  Google Scholar 

  20. 20

    Kusakin P, Belyakov A, Haase C, Kaibyshev R, Molodov DA (2014) Microstructure evolution and strengthening mechanisms of Fe–23Mn–0.3C–1.5Al TWIP steel during cold rolling. Mater Sci Eng A 617(1):52–60

    Article  Google Scholar 

  21. 21

    Bouaziz O, Scott CP, Petitgand G (2009) Nanostructured steel with high work-hardening by the exploitation of the thermal stability of mechanically induced twins. Scr Mater 60(8):714–716

    Article  Google Scholar 

  22. 22

    Haase C, Barrales-Mora LA, Roters F, Molodov DA, Gottstein G (2014) Applying the texture analysis for optimizing thermomechanical treatment of high manganese twinning-induced plasticity steel. Acta Mater 80:327–340

    Article  Google Scholar 

  23. 23

    Zhou P, Liang ZY, Liu RD, Huang MX (2016) Evolution of dislocations and twins in a strong and ductile nanotwinned steel. Acta Mater 111:96–107

    Article  Google Scholar 

  24. 24

    Li L, Hsu TY (1997) Gibbs free energy evaluation of the fcc(γ) and hcp(ε) phases in Fe–Mn–Si alloys. Calphad 21(3):443–448

    Article  Google Scholar 

  25. 25

    Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  26. 26

    Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1997) An investigation of microstructural evolution during equal-channel angular pressing. Acta Mater 45:4733–4741

    Article  Google Scholar 

  27. 27

    He W, Ma W, Pantleon W (2008) Microstructure of individual grains in cold-rolled aluminium from orientation inhomogeneities resolved by electron backscattering diffraction. Mater Sci Eng A 494:21–27

    Article  Google Scholar 

  28. 28

    Frommeyer G, Drewes EJ, Engl B (2000) Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Rev Metall 97(10):1245–1253

    Article  Google Scholar 

  29. 29

    Raabe D (2003) Overview of basic types of hot rolling textures of steels. Steel Res Int 74:327–337

    Article  Google Scholar 

  30. 30

    Suwas S, Toth LS, Fundenberger JJ, Grosdidier T, Skrotzki W (2005) Texture evolution in FCC metals during equal channel angular extrusion (ECAE) as a function of stacking fault energy. Sol State Phenom 105:345–350

    Article  Google Scholar 

  31. 31

    Vercammen S, Blanpain B, Cooman BCD, Wollants P (2004) Cold rolling behaviour of an austenitic Fe–30Mn–3Al–3Si TWIP-steel: the importance of deformation twinning. Acta Mater 52(7):2005–2012

    Article  Google Scholar 

  32. 32

    Bracke L, Verbeken K, Kestens L, Penning J (2009) Microstructure and texture evolution during cold rolling and annealing of a high Mn TWIP steel. Acta Mater 57(5):1512–1524

    Article  Google Scholar 

  33. 33

    Haase C, Chowdhury SG, Barrales-Mora LA, Molodov DA, Gottstein G (2013) On the relation of microstructure and texture evolution in an austenitic Fe–28Mn–02.8C TWIP steel during cold rolling. Metall Mater Trans A 44(2):911–922

    Article  Google Scholar 

  34. 34

    Hirsch J, Lucke K, Hatherly M (1988) Overview no. 76: mechanism of deformation and development of rolling textures in polycrystalline f.c.c. metals—III. The influence of slip inhomogeneities and twinning. Acta Metall 36:2905–2927

    Article  Google Scholar 

  35. 35

    Saleh AA, Pereloma EV, Gazder AA (2011) Texture evolution of cold rolled and annealed Fe–24Mn–3Al–2Si–1Ni–0.06C TWIP steel. Mater Sci Eng A 528:4537–4549

    Article  Google Scholar 

  36. 36

    Beyerlein IJ, Toth LS (2009) Texture evolution in equal-channel angular extrusion. Prog Mater Sci 54:427–510

    Article  Google Scholar 

  37. 37

    Suwas S, Massion RA, Toth LS, Eberhardt A, Fundenberger JJ, Skrotzki W (2006) Evolution of crystallographic texture during equal channel angular extrusion of copper: the role of material variables. Metall Mater Trans A 37:739–753

    Article  Google Scholar 

  38. 38

    Higuera-Cobos OF, Berrios-Ortiz JA, Cabrera JM (2014) Texture and fatigue behavior of ultrafine grained copper produced by ECAP. Mater Sci Eng A 609:273–282

    Article  Google Scholar 

  39. 39

    Skrotzky W, Scheerbaum N, Oertel CG, Arrufat-Massion R, Suwas S, Toth LS (2007) Microstructure and texture gradient in copper deformed by equal channel angular extrusion. Acta Mater 55:2013–2024

    Article  Google Scholar 

  40. 40

    Li S, Beyerlein IJ, Alexander DJ, Vogel SC (2005) Texture evolution during multipass equal channel angular extrusion of copper: neutron diffraction characterization and polycrystal modelling. Acta Mater 53:2111–2121

    Article  Google Scholar 

  41. 41

    Benito JA, Cobo R, Lei W, Calvo J, Cabrera JM (2016) Stress–strain response and microstructural evolution of a FeMnCAl TWIP steel during tension–compression tests. Mater Sci Eng A 655:310–320

    Article  Google Scholar 

  42. 42

    Gil-Sevillano J (2009) An alternative model for the strain hardening of FCC alloys that twin, validated for twinning-induced plasticity steel. Scr Mater 60:336–339

    Article  Google Scholar 

  43. 43

    Barbier D, Gey N, Allain S, Bozzolo N, Humbert M (2009) Analysis of the tensile behavior of a TWIP steel based on the texture and microstructure evolutions. Mater Sci Eng A 500:196–206

    Article  Google Scholar 

  44. 44

    Idrissi H, Renard K, Ryelandt L, Schryvers D, Jacques PJ (2010) On the mechanism of twin formation in Fe–Mn–C TWIP steels. Acta Mater 58:2464–2476

    Article  Google Scholar 

  45. 45

    Qu S, An XH, Yang HJ, Huang CX, Yang G, Zang QS, Wang ZG, Wu SD, Zhang ZF (2009) Microstructural evolution and mechanical properties of Cu–Al alloys subjected to equal channel angular pressing. Acta Mater 57:1586–1601

    Article  Google Scholar 

  46. 46

    Hughes DA, Lebensohn RA, Wenk HR, Kumar A (2000) Stacking fault energy and microstructure effects on torsion texture evolution. Proc R Soc A 456(1996):921–953

    Article  Google Scholar 

  47. 47

    Jin JE, Lee YK (2009) Strain hardening behavior of a Fe–18Mn–0.6C–1.5Al TWIP steel. Mater Sci Eng A 527:157–161

    Article  Google Scholar 

  48. 48

    Jin JE, Lee YK (2012) Effects of Al on microstructure and tensile properties of C-bearing high Mn TWIP steel. Acta Mater 60:1680–1688

    Article  Google Scholar 

  49. 49

    Gutierrez-Urrutia I, Raabe D (2011) Dislocation and twin substructure evolution during strain hardening of an Fe–22 wt% Mn–0.6 wt% C TWIP steel observed by electron channeling contrast imaging. Acta Mater 59:6449–6462

    Article  Google Scholar 

  50. 50

    Estrin Y, Vinogradov A (2013) Extreme grain refinement by severe plastic deformation: a wealth of challenging science. Acta Mater 61:782–817

    Article  Google Scholar 

  51. 51

    Barbier D, Favier V, Bolle B (2012) Modelling the deformation textures and microstructural evolutions of a Fe–Mn–C TWIP steel during tensile and shear testing. Mater Sci and Eng A 540:212–225

    Article  Google Scholar 

  52. 52

    Chowdhury SG, Gubizca J, Mahato B, Chinh NQ, Hegedus Z, Langdon TG (2011) Texture evolution during room temperature ageing of silver processed by equal-channel angular pressing. Scr Mater 64:1007–1010

    Article  Google Scholar 

  53. 53

    Gazder AA, Torre FD, Gu CF, Davies CHJ, Pereloma EV (2006) Microstructure and texture evolution of BCC and FCC metals subjected to equal channel angular extrusion. Mater Sci Eng 55:126–139

    Article  Google Scholar 

  54. 54

    Skrotzki W, Scheerbaum N, Oertel CG, Brokmeier HG, Suwas S, Toth LS (2005) Texture gradient in ECAP silver measured by synchrotron radiation. Mater Sci Forum 495–497:821–826

    Article  Google Scholar 

  55. 55

    Suwas S, Toth LS, Fundenberger JJ, Eberhardt A, Skrotzki W (2003) Evolution of crystallographic texture during equal channel angular extrusion of silver. Scr Mater 49:1203–1206

    Article  Google Scholar 

  56. 56

    Beyerlein IJ, Toth LS, Tomé CN, Suwas S (2007) Role of twinning on texture evolution of silver during equal channel angular extrusion. Philos Mag 87:885–906

    Article  Google Scholar 

Download references

Acknowledgements

The present work has been financially supported by China Scholarship Council (CSC) and the Spanish Ministry of Economy and Competitiveness through Project MAT2014-59419-C3-1-R.

Author information

Affiliations

Authors

Corresponding author

Correspondence to L. Wang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Wang, L., Benito, J.A., Calvo, J. et al. Equal channel angular pressing of a TWIP steel: microstructure and mechanical response. J Mater Sci 52, 6291–6309 (2017). https://doi.org/10.1007/s10853-017-0862-7

Download citation

Keywords

  • Stack Fault Energy
  • Equal Channel Angular Pressing
  • Texture Component
  • Pass Sample
  • TWIP Steel