Skip to main content
Log in

Fabrication of Cu2SnS3 thin-film solar cells with oxide precursor by pulsed laser deposition

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this paper, Cu2SnS3 (CTS) thin film is fabricated through sulfurization of oxide precursor which is deposited by pulsed laser deposition with a mixed CuO/SnO2 target. XRD and Raman analyses indicate a pure monoclinic Cu2SnS3 phase has been obtained by sulfurization at temperature from 500 to 600 °C. A compact and smooth film with polycrystalline structure is observed through SEM result. In addition, the CTS films show excellent absorbance with the band gap around 0.91 eV estimated by UV–Vis, which is suitable for the absorption layer of solar cells. Final devices were fabricated with a SLG/Mo/CTS/CdS/i-ZnO/AZO/Al structure. Device performance is improved with the temperature increasing. The best efficiency of CTS-based solar cells is 0.69% with an open-circuit voltage of 144 mV and a short-circuit current density of 18.30 mA/cm−2.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Abermann S (2013) Non-vacuum processed next generation thin film photovoltaics: towards marketable efficiency and production of CZTS based solar cells. Sol Energy 94:37–70. doi:10.1016/j.solener.2013.04.017

    Article  Google Scholar 

  2. Berg DM, Djemour R, Gütay L, Zoppi G, Siebentritt S, Dale PJ (2012) Thin film solar cells based on the ternary compound Cu2SnS3. Thin Solid Films 520:6291–6294. doi:10.1016/j.tsf.2012.05.085

    Article  Google Scholar 

  3. Fan D, Zhang J, Wang X, Xu M, Xu S (2015) Three-step process improves crystal quality of Cu2ZnSnS4 absorber layer and efficiency of solar cell. Cryst Res Technol 50:613–620. doi:10.1002/crat.201500025

    Article  Google Scholar 

  4. Agawane GL, Kamble AS, Vanalakar SA et al (2015) Fabrication of 3.01% power conversion efficient high-quality CZTS thin film solar cells by a green and simple sol–gel technique. Mater Lett 158:58–61. doi:10.1016/j.matlet.2015.05.036

    Article  Google Scholar 

  5. Zhao W, Wang G, Tian Q, Yang Y, Huang L, Pan D (2014) Fabrication of Cu2ZnSn(S, Se)4 solar cells via an ethanol-based sol–gel route using SnS2 as Sn source. ACS Appl Mater Interfaces 6:12650–12655. doi:10.1021/am5026006

    Article  Google Scholar 

  6. McMeekin DP, Sadoughi G, Rehman W, Eperon GE, Saliba M, Hörantner MT, Haghighirad A, Sakai N, Korte L, Rech B, Johnston MB, Herz LM, Snaith HJ (2016) A mixed-cation lead mixed-halide perovskite absorber for tandem solar cells. Science 351:151–155

    Article  Google Scholar 

  7. Kephart JM, McCamy JW, Ma Z, Ganjoo A, Alamgir FM, Sampath WS (2016) Band alignment of front contact layers for high-efficiency CdTe solar cells. Sol Energy Mater Sol Cells 157:266–275. doi:10.1016/j.solmat.2016.05.050

    Article  Google Scholar 

  8. Babayigit A, Ethirajan A, Muller M, Conings B (2016) Toxicity of organometal halide perovskite solar cells. Nat Mater 15:247–251. doi:10.1038/nmat4572

    Article  Google Scholar 

  9. Ali N, Hussain A, Ahmed R et al (2016) Advances in nanostructured thin film materials for solar cell applications. Renew Sustain Energy Rev 59:726–737. doi:10.1016/j.rser.2015.12.268

    Article  Google Scholar 

  10. Chen Q, Dou X, Ni Y, Cheng S, Zhuang S (2012) Study and enhance the photovoltaic properties of narrow-bandgap Cu2SnS3 solar cell by p–n junction interface modification. J Colloid Interface Sci 376:327–330. doi:10.1016/j.jcis.2012.03.015

    Article  Google Scholar 

  11. Zhang H, Xie M, Zhang S, Xiang Y (2014) Fabrication of highly crystallized Cu2SnS3 thin films through sulfurization of Sn-rich metallic precursors. J Alloys Compd 602:199–203. doi:10.1016/j.jallcom.2014.03.014

    Article  Google Scholar 

  12. Zawadzki P, Baranowski LL, Peng H et al (2013) Evaluation of photovoltaic materials within the Cu–Sn–S family. Appl Phys Lett 103:253902(01)–253902(05). doi:10.1063/1.4851896

    Article  Google Scholar 

  13. Baranowski LL, Zawadzki P, Christensen S et al (2014) Control of doping in Cu2SnS3 through defects and alloying. Chem Mater 26:4951–4959. doi:10.1021/cm501339v

    Article  Google Scholar 

  14. Chino K, Koike J, Eguchi S et al (2012) Preparation of Cu2SnS3 thin films by sulfurization of Cu/Sn stacked precursors. Jpn J Appl Phys 51:10NC35(01)–10NC35(04). doi:10.1143/jjap.51.10nc35

    Article  Google Scholar 

  15. Nakashima M, Yamaguchi T, Itani H, Sasano J, Izaki M (2015) Cu2SnS3 thin film solar cells prepared by thermal crystallization of evaporated Cu/Sn precursors in sulfur and tin atmosphere. Phys Status Solidi 12:761–764. doi:10.1002/pssc.201400269

    Article  Google Scholar 

  16. Vanalakar SA, Agawane GL, Kamble AS, Hong CW, Patil PS, Kim JH (2015) Fabrication of Cu2SnS3 thin film solar cells using pulsed laser deposition technique. Sol Energy Mater Sol Cells 138:1–8. doi:10.1016/j.solmat.2015.02.031

    Article  Google Scholar 

  17. Chen G, Jiang G, Liu W, Chen X, Zhu C (2012) Solvent-free synthesis of oxides for CuInSe2 thin films fabrication. Appl Surf Sci 258:3428–3432. doi:10.1016/j.apsusc.2011.11.089

    Article  Google Scholar 

  18. Aihara N, Araki H, Takeuchi A, Jimbo K, Katagiri H (2013) Fabrication of Cu2SnS3 thin films by sulfurization of evaporated Cu–Sn precursors for solar cells. Phys Status Solidi 10:1086–1092. doi:10.1002/pssc.201200866

    Article  Google Scholar 

  19. Nair MTS, Lopez-Mata C, GomezDaza O, Nair PK (2003) Copper tin sulfide semiconductor thin films produced by heating SnS–CuS layers deposited. Semicond Sci Technol 18:755–759

    Article  Google Scholar 

  20. Li J, Xue C, Wang Y, Jiang G, Liu W, Zhu C (2016) Cu2SnS3 solar cells fabricated by chemical bath deposition—annealing of SnS/Cu stacked layers. Sol Energy Mater Sol Cells 144:281–288. doi:10.1016/j.solmat.2015.09.017

    Article  Google Scholar 

  21. Su Z, Sun K, Han Z et al (2012) Fabrication of ternary Cu–Sn–S sulfides by a modified successive ionic layer adsorption and reaction (SILAR) method. J Mater Chem 22:16346–16352. doi:10.1039/c2jm31669b

    Article  Google Scholar 

  22. Fernandes PA, Salomé PMP, Da Cunha AF (2010) A study of ternary Cu2SnS3 and Cu3SnS4 thin films prepared by sulfurizing stacked metal precursors. J Phys D Appl Phys 43:215403(01)–215403(11). doi:10.1088/0022-3727/43/21/215403

    Article  Google Scholar 

  23. Dong Y, He J, Sun L, Chen Y, Yang P, Chu J (2015) Effect of sulfurization temperature on properties of Cu2SnS3 thin films and solar cells prepared by sulfurization of stacked metallic precursors. Mater Sci Semicond Process 38:171–176. doi:10.1016/j.mssp.2015.04.026

    Article  Google Scholar 

  24. He J, Sun L, Zhang K et al (2013) Effect of post-sulfurization on the composition, structure and optical properties of Cu2ZnSnS4 thin films deposited by sputtering from a single quaternary target. Appl Surf Sci 264:133–138. doi:10.1016/j.apsusc.2012.09.140

    Article  Google Scholar 

  25. Jayasree Y, Chalapathi U, Sundara Raja V (2015) Growth of Cu2SnS3 thin films by a two-stage process: structural, microstructural and optical properties. J Mater Sci Mater Electron 26:5946–5951. doi:10.1007/s10854-015-3166-1

    Article  Google Scholar 

  26. Wang Y, Li J, Xue C et al (2016) Investigation of the sulfurization process of Cu2SnS3 thin films with stacked layers CBD-Cu/SnS by rapid thermal process. Mater Lett 178:104–106. doi:10.1016/j.matlet.2016.04.140

    Article  Google Scholar 

  27. Ye M, Wen X, Zhang N, Guo W, Liu X, Lin C (2015) In situ growth of CuS and Cu1.8S nanosheet. J Mater Chem A 3:9595–9600. doi:10.1039/C5TA00390C

    Article  Google Scholar 

  28. Liang X, Cai Q, Xiang W, Chen Z, Zhong J, Wang Y, Shao M, Li Z (2013) Preparation and characterization of flower-like Cu2SnS3 nanostructures by solvothermal route. J Mater Sci Technol 29(3):231–236. doi:10.1016/j.jmst.2013.01.018

    Article  Google Scholar 

  29. Chen Z, Zeng Q, Liu F, Jin G, Du X, Du J, Zhanga H, Yang B (2015) Efficient inorganic solar cells from aqueous nanocrystals: the impact of composition on carrier dynamics. RSC Adv 5:74263–74269. doi:10.1039/C5RA15805B

    Article  Google Scholar 

  30. Nakashima M, Fujimoto J, Yamaguchi T, Izaki M (2015) Cu2SnS3 thin-film solar cells fabricated by sulfurization from NaF/Cu/Sn stacked precursor. Appl Phys Express 8:042303(01)–042303(04). doi:10.7567/apex.8.042303

    Article  Google Scholar 

  31. Avellaneda D, Nair MTS, Nair PK (2010) Cu2SnS3 and Cu4SnS4 thin films via chemical deposition for photovoltaic application. J Electrochem Soc 157:D346–D352. doi:10.1149/1.3384660

    Article  Google Scholar 

  32. Sato S, Sumi H, Shi G, Sugiyama M (2015) Investigation of the sulfurization process of Cu2SnS3 thin films and estimation of band offsets of Cu2SnS3-related solar cell structure. Phys Status Solidi 12:757–760. doi:10.1002/pssc.201400294

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Basic Research Program of China (973 Program)-2012CB922001 and the Fundamental Research Funds for the Central Universities, No. WK2060140022.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Weifeng Liu or Changfei Zhu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, Y., Li, J., Xue, C. et al. Fabrication of Cu2SnS3 thin-film solar cells with oxide precursor by pulsed laser deposition. J Mater Sci 52, 6225–6234 (2017). https://doi.org/10.1007/s10853-017-0856-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0856-5

Keywords

Navigation