Abstract
Luminescent erbium-based inorganic–organic hybrid materials play an important role in many frontier nano-sized applications, such as amplifiers, detectors and OLEDs. Here, we demonstrate the possibility to fabricate high-quality thin films comprising both erbium and an appropriate organic molecule as a luminescence sensitizer utilizing the combined atomic layer deposition and molecular layer deposition (ALD/MLD) technique. We employ tris(N,N′-diisopropyl-2-dimethylamido guanidinato)erbium(III) [Er(DPDMG)3] together with 3,5-pyridine dicarboxylic acid as precursors. With the appreciably high film deposition rate achieved (6.4 Å cycle−1), the guanidinate precursor indeed appears as an interesting new addition to the ALD/MLD precursor variety toward novel materials. Our erbium–organic thin films showed highly promising UV absorption properties and a photoluminescence at 1535 nm for a 325-nm excitation, relevant to possible future luminescence applications.
Similar content being viewed by others
Explore related subjects
Discover the latest articles, news and stories from top researchers in related subjects.References
Polman A, van Veggel FCJM (2004) Broadband sensitizers for erbium-doped planar optical amplifiers: review. J Opt Soc Am B 21(5):871–892. doi:10.1364/JOSAB.21.000871
Bunzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048–1077. doi:10.1039/b406082m
Wang S-J, Hu J-B, Wang Y-Y, Luo F (2013) Coating graphene oxide sheets with luminescent rare-earth complexes. J Mater Sci 48(2):805–811. doi:10.1007/s10853-012-6799-y
Huang X (2016) Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF3: Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles. J Mater Sci 51(7):3490–3499. doi:10.1007/s10853-015-9667-8
Becker PC, Simpson JR, Olsson NA (1999) Erbium-doped fiber amplifiers: fundamentals and technology. Optics and photonics. Academic Press, San Diego
Mears RJ, Reekie L, Jauncey IM, Payne DN (1987) Low-noise erbium-doped fibre amplifier operating at 1.54 μm. Electron Lett 23(19):1026–1028. doi:10.1049/el:19870719
Zang Z-G, Yang W-x (2011) Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber. J Appl Phys 109(10):103106. doi:10.1063/1.3587358
Zang Z (2013) All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating. Appl Opt 52(23):5701–5706. doi:10.1364/AO.52.005701
Zang Z, Zhang Y (2012) Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation. Appl Opt 51(16):3424–3430. doi:10.1364/AO.51.003424
Jha A, Shen S, Huang L, Richards B, Lousteau J (2007) Rare-earth doped glass waveguides for visible, near-IR and mid-IR lasers and amplifiers. J Mater Sci Mater Electron 18(S1):315–320. doi:10.1007/s10854-007-9213-9
Kong Q, Wang J, Dong X, Yu W, Liu G (2014) Synthesis and luminescence properties of Yb3+–Er3+ co-doped LaOCl nanostructures. J Mater Sci 49(7):2919–2931. doi:10.1007/s10853-013-8003-4
Ye HQ, Li Z, Peng Y, Wang CC, Li TY, Zheng YX, Sapelkin A, Adamopoulos G, Hernández I, Wyatt PB, Gillin WP (2014) Organo-erbium systems for optical amplification at telecommunications wavelengths. Nat Mater 13(4):382–386. doi:10.1038/nmat3910
Gillin WP, Curry RJ (1999) Erbium (III) tris(8-hydroxyquinoline) (ErQ): a potential material for silicon compatible 1.5 μm emitters. Appl Phys Lett 74(6):798–799. doi:10.1063/1.123371
Harrison BS, Foley TJ, Bouguettaya M, Boncella JM, Reynolds JR, Schanze KS, Shim J, Holloway PH, Padmanaban G, Ramakrishnan S (2001) Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends. Appl Phys Lett 79(23):3770–3772. doi:10.1063/1.1421413
Kang T-S, Harrison BS, Foley TJ, Knefely AS, Boncella JM, Reynolds JR, Schanze KS (2003) Near-infrared electroluminescence from lanthanide tetraphenylporphyrin: polystyrene blends. Adv Mater 15(13):1093–1097. doi:10.1002/adma.200304692
Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102(6):2357–2368. doi:10.1021/cr010448y
Kuriki K, Koike Y, Okamoto Y (2002) Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem Rev 102(6):2347–2356. doi:10.1021/cr010309g
Nardi M, Verucchi R, Tubino R, Iannotta S (2009) Activation and control of organolanthanide synthesis by supersonic molecular beams: erbium-porphyrin test case. Phys Rev B 79(12): 125404.1–125404.9. doi:10.1103/PhysRevB.79.125404
Pizzoferrato R, Lagonigro L, Ziller T, Di Carlo A, Paolesse R, Mandoj F, Ricci A, Lo Sterzo C (2004) Förster energy transfer from poly(arylene–ethynylene)s to an erbium–porphyrin complex. Chem Phys 300(1–3):217–225. doi:10.1016/j.chemphys.2004.02.006
Slooff LH, Polman A, Oude Wolbers MP, van Veggel FCJM, Reinhoudt DN, Hofstraat JW (1998) Optical properties of erbium-doped organic polydentate cage complexes. J Appl Phys 83(1):497–503. doi:10.1063/1.366721
Zhao ZX, Xie TF, Li DM, Wang DJ, Liu GF (2001) Lanthanide complexes with acetylacetonate and 5,10,15,20-tetra[para-(4-flourobenzoyloxy)-meta-ethyloxy]phenylporphyrin. Synth Met 123(1):33–38. doi:10.1016/S0379-6779(00)00574-9
Suntola T, Antson J (1977) Method for producing compound thin films (US-patent Nr. US4058430 A)
Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97(12):121301. doi:10.1063/1.1940727
Yoshimura T, Tatsuura S, Sotoyama W (1991) Polymer films formed with monolayer growth steps by molecular layer deposition. Appl Phys Lett 59(4):482–484. doi:10.1063/1.105415
Yoshimura T, Tatsuura S, Sotoyama W, Matsuura A, Hayano T (1992) Quantum wire and dot formation by chemical vapor deposition and molecular layer deposition of one-dimensional conjugated polymer. Appl Phys Lett 60(3):268–270. doi:10.1063/1.106681
Sundberg P, Karppinen M (2014) Organic and inorganic–organic thin film structures by molecular layer deposition: a review. Beilstein J Nanotechnol 5:1104–1136. doi:10.3762/bjnano.5.123
Dameron AA, Seghete D, Burton BB, Davidson SD, Cavanagh AS, Bertrand JA, George SM (2008) Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem Mater 20(10):3315–3326. doi:10.1021/cm7032977
Lee BH, Ryu MK, Choi S-Y, Lee K-H, Im S, Sung MM (2007) Rapid vapor-phase fabrication of organic–inorganic hybrid superlattices with monolayer precision. J Am Chem Soc 129(51):16034–16041. doi:10.1021/ja075664o
Leskelä M, Ritala M, Nilsen O (2011) Novel materials by atomic layer deposition and molecular layer deposition. MRS Bull 36(11):877–884. doi:10.1557/mrs.2011.240
Smirnov VM, Zemtsova EG, Belikov AA, Zheldakov IL, Morozov PE, Polyachonok OG, Aleskovskii VB (2007) Chemical design of quasi-one-dimensional organoiron nanostructures fixed on an inorganic matrix and study of their magnetic properties. Dokl Phys Chem 413(2):95–98. doi:10.1134/S0012501607040069
Sood A, Sundberg P, Malm J, Karppinen M (2011) Layer-by-layer deposition of Ti–4,4′-oxydianiline hybrid thin films. Appl Surf Sci 257(15):6435–6439. doi:10.1016/j.apsusc.2011.02.022
Päiväsaari J, Putkonen M, Sajavaara T, Niinistö L (2004) Atomic layer deposition of rare earth oxides: erbium oxide thin films from β-diketonate and ozone precursors. J Alloys Compd 374(1–2):124–128. doi:10.1016/j.jallcom.2003.11.149
Päiväsaari J, Niinistö J, Arstila K, Kukli K, Putkonen M, Niinistö L (2005) High growth rate of erbium oxide thin films in atomic layer deposition from (CpMe)3Er and water precursors. Chem Vap Depos 11(10):415–419. doi:10.1002/cvde.200506396
Päiväsaari J, Dezelah ICL, Back D, El-Kaderi HM, Heeg MJ, Putkonen M, Niinistö L, Winter CH (2005) Synthesis, structure and properties of volatile lanthanide complexes containing amidinate ligands: application for Er2O3 thin film growth by atomic layer deposition. J Mater Chem 15(39):4224–4233. doi:10.1039/b507351k
Xu K, Chaudhuri AR, Parala H, Schwendt D, de los Arcos T, Osten HJ, Devi A, Tdl Arcos (2013) Atomic layer deposition of Er2O3 thin films from Er tris-guanidinate and water: process optimization, film analysis and electrical properties. J Mater Chem C 1(25):3939–3946. doi:10.1039/c3tc30401a
Giedraityte Z, Sundberg P, Karppinen M (2015) Flexible inorganic–organic thin film phosphors by ALD/MLD. J Mater Chem C 3(47):12316–12321. doi:10.1039/c5tc03201f
Milanov AP, Xu K, Cwik S, Parala H, de los Arcos T, Becker H-W, Rogalla D, Cross R, Paul S, Devi A (2012) Sc2O3, Er2O3, and Y2O3 thin films by MOCVD from volatile guanidinate class of rare-earth precursors. Dalton Trans 41(45):13936–13947. doi:10.1039/c2dt31219k
Eisentraut KJ, Sievers RE (1965) Volatile rare earth chelates. J Am Chem Soc 87(22):5254–5256. doi:10.1021/ja00950a051
Mayer M (2014) Improved physics in SIMNRA 7. Nucl Instrum Meth Phys Res B 332:176–180. doi:10.1016/j.nimb.2014.02.056
Łyszczek R (2009) Thermal investigation and infrared evolved gas analysis of light lanthanide(III) complexes with pyridine-3,5-dicarboxylic acid. J Anal Appl Pyrolysis 86(2):239–244. doi:10.1016/j.jaap.2009.07.003
Ye H-M, Ren N, Zhang J-J, Sun S-J, Wang J-F (2010) Crystal structures, luminescent and thermal properties of a new series of lanthanide complexes with 4-ethylbenzoic acid. New J Chem 34(3):533–540. doi:10.1039/b9nj00504h
Puntus L, Zolin V, Kudryashova V (2004) Analysis of carboxylate coordination function of the isomeric lanthanide pyridinedicarboxylates by means of vibration spectroscopy. J Alloys Compd 374(1–2):330–334. doi:10.1016/j.jallcom.2003.11.104
Nataraj A, Balachandran V, Karthick T, Karabacak M, Atac A (2012) FT-Raman, FT-IR, UV spectra and DFT and ab initio calculations on monomeric and dimeric structures of 3,5-pyridinedicarboxylic acid. J Mol Struct 1027:1–14. doi:10.1016/j.molstruc.2012.05.048
Mech A, Monguzzi A, Meinardi F, Mezyk J, Macchi G, Tubino R (2010) Sensitized NIR erbium(III) emission in confined geometries: a new strategy for light emitters in telecom applications. J Am Chem Soc 132(13):4574–4576. doi:10.1021/ja907927s
Puntus LN, Zolin VF, Babushkina TA, Kutuza IB (2004) Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates. J Alloys Compd 380(1–2):310–314. doi:10.1016/j.jallcom.2004.03.059
Truillet C, Lux F, Brichart T, Lu GW, Gong QH, Perriat P, Martini M, Tillement O (2013) Energy transfer from pyridine molecules towards europium cations contained in sub 5-nm Eu2O3 nanoparticles: can a particle be an efficient multiple donor–acceptor system? J Appl Phys 114(11):114308. doi:10.1063/1.4821428
Łyszczek R, Mazur L (2012) Polynuclear complexes constructed by lanthanides and pyridine-3,5-dicarboxylate ligand: structures, thermal and luminescent properties. Polyhedron 41(1):7–19. doi:10.1016/j.poly.2012.04.009
van den Hoven GN, Snoeks E, Polman A, van Dam C, van Uffelen JWM, Smit MK (1996) Upconversion in Er-implanted Al2O3 waveguides. J Appl Phys 79(3):1258. doi:10.1063/1.361020
Rönn J, Karvonen L, Kauppinen C, Perros AP, Peyghambarian N, Lipsanen H, Säynätjoki A, Sun Z (2016) Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement. ACS Photonics 3(11):2040–2048. doi:10.1021/acsphotonics.6b00283
Acknowledgements
The present work has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Advanced Grant Agreement (No. 339478). Furthermore, the authors at the Ruhr-University Bochum thank the Deutsche Forschungsgemeinschaft within the DFG-SFB-TR87 and the EU-COST project HERALD for supporting this work.
Author information
Authors and Affiliations
Corresponding authors
Electronic supplementary material
Below is the link to the electronic supplementary material.
Rights and permissions
About this article
Cite this article
Mai, L., Giedraityte, Z., Schmidt, M. et al. Atomic/molecular layer deposition of hybrid inorganic–organic thin films from erbium guanidinate precursor. J Mater Sci 52, 6216–6224 (2017). https://doi.org/10.1007/s10853-017-0855-6
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-017-0855-6