Skip to main content
Log in

Atomic/molecular layer deposition of hybrid inorganic–organic thin films from erbium guanidinate precursor

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Luminescent erbium-based inorganic–organic hybrid materials play an important role in many frontier nano-sized applications, such as amplifiers, detectors and OLEDs. Here, we demonstrate the possibility to fabricate high-quality thin films comprising both erbium and an appropriate organic molecule as a luminescence sensitizer utilizing the combined atomic layer deposition and molecular layer deposition (ALD/MLD) technique. We employ tris(N,N′-diisopropyl-2-dimethylamido guanidinato)erbium(III) [Er(DPDMG)3] together with 3,5-pyridine dicarboxylic acid as precursors. With the appreciably high film deposition rate achieved (6.4 Å cycle−1), the guanidinate precursor indeed appears as an interesting new addition to the ALD/MLD precursor variety toward novel materials. Our erbium–organic thin films showed highly promising UV absorption properties and a photoluminescence at 1535 nm for a 325-nm excitation, relevant to possible future luminescence applications.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

Explore related subjects

Discover the latest articles, news and stories from top researchers in related subjects.

References

  1. Polman A, van Veggel FCJM (2004) Broadband sensitizers for erbium-doped planar optical amplifiers: review. J Opt Soc Am B 21(5):871–892. doi:10.1364/JOSAB.21.000871

    Article  Google Scholar 

  2. Bunzli J-CG, Piguet C (2005) Taking advantage of luminescent lanthanide ions. Chem Soc Rev 34(12):1048–1077. doi:10.1039/b406082m

    Article  Google Scholar 

  3. Wang S-J, Hu J-B, Wang Y-Y, Luo F (2013) Coating graphene oxide sheets with luminescent rare-earth complexes. J Mater Sci 48(2):805–811. doi:10.1007/s10853-012-6799-y

    Article  Google Scholar 

  4. Huang X (2016) Synthesis, multicolour tuning, and emission enhancement of ultrasmall LaF3: Yb3+/Ln3+ (Ln = Er, Tm, and Ho) upconversion nanoparticles. J Mater Sci 51(7):3490–3499. doi:10.1007/s10853-015-9667-8

    Article  Google Scholar 

  5. Becker PC, Simpson JR, Olsson NA (1999) Erbium-doped fiber amplifiers: fundamentals and technology. Optics and photonics. Academic Press, San Diego

    Google Scholar 

  6. Mears RJ, Reekie L, Jauncey IM, Payne DN (1987) Low-noise erbium-doped fibre amplifier operating at 1.54 μm. Electron Lett 23(19):1026–1028. doi:10.1049/el:19870719

    Article  Google Scholar 

  7. Zang Z-G, Yang W-x (2011) Theoretical and experimental investigation of all-optical switching based on cascaded LPFGs separated by an erbium-doped fiber. J Appl Phys 109(10):103106. doi:10.1063/1.3587358

    Article  Google Scholar 

  8. Zang Z (2013) All-optical switching in Sagnac loop mirror containing an ytterbium-doped fiber and fiber Bragg grating. Appl Opt 52(23):5701–5706. doi:10.1364/AO.52.005701

    Article  Google Scholar 

  9. Zang Z, Zhang Y (2012) Analysis of optical switching in a Yb3+-doped fiber Bragg grating by using self-phase modulation and cross-phase modulation. Appl Opt 51(16):3424–3430. doi:10.1364/AO.51.003424

    Article  Google Scholar 

  10. Jha A, Shen S, Huang L, Richards B, Lousteau J (2007) Rare-earth doped glass waveguides for visible, near-IR and mid-IR lasers and amplifiers. J Mater Sci Mater Electron 18(S1):315–320. doi:10.1007/s10854-007-9213-9

    Article  Google Scholar 

  11. Kong Q, Wang J, Dong X, Yu W, Liu G (2014) Synthesis and luminescence properties of Yb3+–Er3+ co-doped LaOCl nanostructures. J Mater Sci 49(7):2919–2931. doi:10.1007/s10853-013-8003-4

    Article  Google Scholar 

  12. Ye HQ, Li Z, Peng Y, Wang CC, Li TY, Zheng YX, Sapelkin A, Adamopoulos G, Hernández I, Wyatt PB, Gillin WP (2014) Organo-erbium systems for optical amplification at telecommunications wavelengths. Nat Mater 13(4):382–386. doi:10.1038/nmat3910

    Article  Google Scholar 

  13. Gillin WP, Curry RJ (1999) Erbium (III) tris(8-hydroxyquinoline) (ErQ): a potential material for silicon compatible 1.5 μm emitters. Appl Phys Lett 74(6):798–799. doi:10.1063/1.123371

    Article  Google Scholar 

  14. Harrison BS, Foley TJ, Bouguettaya M, Boncella JM, Reynolds JR, Schanze KS, Shim J, Holloway PH, Padmanaban G, Ramakrishnan S (2001) Near-infrared electroluminescence from conjugated polymer/lanthanide porphyrin blends. Appl Phys Lett 79(23):3770–3772. doi:10.1063/1.1421413

    Article  Google Scholar 

  15. Kang T-S, Harrison BS, Foley TJ, Knefely AS, Boncella JM, Reynolds JR, Schanze KS (2003) Near-infrared electroluminescence from lanthanide tetraphenylporphyrin: polystyrene blends. Adv Mater 15(13):1093–1097. doi:10.1002/adma.200304692

    Article  Google Scholar 

  16. Kido J, Okamoto Y (2002) Organo lanthanide metal complexes for electroluminescent materials. Chem Rev 102(6):2357–2368. doi:10.1021/cr010448y

    Article  Google Scholar 

  17. Kuriki K, Koike Y, Okamoto Y (2002) Plastic optical fiber lasers and amplifiers containing lanthanide complexes. Chem Rev 102(6):2347–2356. doi:10.1021/cr010309g

    Article  Google Scholar 

  18. Nardi M, Verucchi R, Tubino R, Iannotta S (2009) Activation and control of organolanthanide synthesis by supersonic molecular beams: erbium-porphyrin test case. Phys Rev B 79(12): 125404.1–125404.9. doi:10.1103/PhysRevB.79.125404

    Article  Google Scholar 

  19. Pizzoferrato R, Lagonigro L, Ziller T, Di Carlo A, Paolesse R, Mandoj F, Ricci A, Lo Sterzo C (2004) Förster energy transfer from poly(arylene–ethynylene)s to an erbium–porphyrin complex. Chem Phys 300(1–3):217–225. doi:10.1016/j.chemphys.2004.02.006

    Article  Google Scholar 

  20. Slooff LH, Polman A, Oude Wolbers MP, van Veggel FCJM, Reinhoudt DN, Hofstraat JW (1998) Optical properties of erbium-doped organic polydentate cage complexes. J Appl Phys 83(1):497–503. doi:10.1063/1.366721

    Article  Google Scholar 

  21. Zhao ZX, Xie TF, Li DM, Wang DJ, Liu GF (2001) Lanthanide complexes with acetylacetonate and 5,10,15,20-tetra[para-(4-flourobenzoyloxy)-meta-ethyloxy]phenylporphyrin. Synth Met 123(1):33–38. doi:10.1016/S0379-6779(00)00574-9

    Article  Google Scholar 

  22. Suntola T, Antson J (1977) Method for producing compound thin films (US-patent Nr. US4058430 A)

  23. Puurunen RL (2005) Surface chemistry of atomic layer deposition: a case study for the trimethylaluminum/water process. J Appl Phys 97(12):121301. doi:10.1063/1.1940727

    Article  Google Scholar 

  24. Yoshimura T, Tatsuura S, Sotoyama W (1991) Polymer films formed with monolayer growth steps by molecular layer deposition. Appl Phys Lett 59(4):482–484. doi:10.1063/1.105415

    Article  Google Scholar 

  25. Yoshimura T, Tatsuura S, Sotoyama W, Matsuura A, Hayano T (1992) Quantum wire and dot formation by chemical vapor deposition and molecular layer deposition of one-dimensional conjugated polymer. Appl Phys Lett 60(3):268–270. doi:10.1063/1.106681

    Article  Google Scholar 

  26. Sundberg P, Karppinen M (2014) Organic and inorganic–organic thin film structures by molecular layer deposition: a review. Beilstein J Nanotechnol 5:1104–1136. doi:10.3762/bjnano.5.123

    Article  Google Scholar 

  27. Dameron AA, Seghete D, Burton BB, Davidson SD, Cavanagh AS, Bertrand JA, George SM (2008) Molecular layer deposition of alucone polymer films using trimethylaluminum and ethylene glycol. Chem Mater 20(10):3315–3326. doi:10.1021/cm7032977

    Article  Google Scholar 

  28. Lee BH, Ryu MK, Choi S-Y, Lee K-H, Im S, Sung MM (2007) Rapid vapor-phase fabrication of organic–inorganic hybrid superlattices with monolayer precision. J Am Chem Soc 129(51):16034–16041. doi:10.1021/ja075664o

    Article  Google Scholar 

  29. Leskelä M, Ritala M, Nilsen O (2011) Novel materials by atomic layer deposition and molecular layer deposition. MRS Bull 36(11):877–884. doi:10.1557/mrs.2011.240

    Article  Google Scholar 

  30. Smirnov VM, Zemtsova EG, Belikov AA, Zheldakov IL, Morozov PE, Polyachonok OG, Aleskovskii VB (2007) Chemical design of quasi-one-dimensional organoiron nanostructures fixed on an inorganic matrix and study of their magnetic properties. Dokl Phys Chem 413(2):95–98. doi:10.1134/S0012501607040069

    Article  Google Scholar 

  31. Sood A, Sundberg P, Malm J, Karppinen M (2011) Layer-by-layer deposition of Ti–4,4′-oxydianiline hybrid thin films. Appl Surf Sci 257(15):6435–6439. doi:10.1016/j.apsusc.2011.02.022

    Article  Google Scholar 

  32. Päiväsaari J, Putkonen M, Sajavaara T, Niinistö L (2004) Atomic layer deposition of rare earth oxides: erbium oxide thin films from β-diketonate and ozone precursors. J Alloys Compd 374(1–2):124–128. doi:10.1016/j.jallcom.2003.11.149

    Article  Google Scholar 

  33. Päiväsaari J, Niinistö J, Arstila K, Kukli K, Putkonen M, Niinistö L (2005) High growth rate of erbium oxide thin films in atomic layer deposition from (CpMe)3Er and water precursors. Chem Vap Depos 11(10):415–419. doi:10.1002/cvde.200506396

    Article  Google Scholar 

  34. Päiväsaari J, Dezelah ICL, Back D, El-Kaderi HM, Heeg MJ, Putkonen M, Niinistö L, Winter CH (2005) Synthesis, structure and properties of volatile lanthanide complexes containing amidinate ligands: application for Er2O3 thin film growth by atomic layer deposition. J Mater Chem 15(39):4224–4233. doi:10.1039/b507351k

    Article  Google Scholar 

  35. Xu K, Chaudhuri AR, Parala H, Schwendt D, de los Arcos T, Osten HJ, Devi A, Tdl Arcos (2013) Atomic layer deposition of Er2O3 thin films from Er tris-guanidinate and water: process optimization, film analysis and electrical properties. J Mater Chem C 1(25):3939–3946. doi:10.1039/c3tc30401a

    Article  Google Scholar 

  36. Giedraityte Z, Sundberg P, Karppinen M (2015) Flexible inorganic–organic thin film phosphors by ALD/MLD. J Mater Chem C 3(47):12316–12321. doi:10.1039/c5tc03201f

    Article  Google Scholar 

  37. Milanov AP, Xu K, Cwik S, Parala H, de los Arcos T, Becker H-W, Rogalla D, Cross R, Paul S, Devi A (2012) Sc2O3, Er2O3, and Y2O3 thin films by MOCVD from volatile guanidinate class of rare-earth precursors. Dalton Trans 41(45):13936–13947. doi:10.1039/c2dt31219k

    Article  Google Scholar 

  38. Eisentraut KJ, Sievers RE (1965) Volatile rare earth chelates. J Am Chem Soc 87(22):5254–5256. doi:10.1021/ja00950a051

    Article  Google Scholar 

  39. Mayer M (2014) Improved physics in SIMNRA 7. Nucl Instrum Meth Phys Res B 332:176–180. doi:10.1016/j.nimb.2014.02.056

    Article  Google Scholar 

  40. Łyszczek R (2009) Thermal investigation and infrared evolved gas analysis of light lanthanide(III) complexes with pyridine-3,5-dicarboxylic acid. J Anal Appl Pyrolysis 86(2):239–244. doi:10.1016/j.jaap.2009.07.003

    Article  Google Scholar 

  41. Ye H-M, Ren N, Zhang J-J, Sun S-J, Wang J-F (2010) Crystal structures, luminescent and thermal properties of a new series of lanthanide complexes with 4-ethylbenzoic acid. New J Chem 34(3):533–540. doi:10.1039/b9nj00504h

    Article  Google Scholar 

  42. Puntus L, Zolin V, Kudryashova V (2004) Analysis of carboxylate coordination function of the isomeric lanthanide pyridinedicarboxylates by means of vibration spectroscopy. J Alloys Compd 374(1–2):330–334. doi:10.1016/j.jallcom.2003.11.104

    Article  Google Scholar 

  43. Nataraj A, Balachandran V, Karthick T, Karabacak M, Atac A (2012) FT-Raman, FT-IR, UV spectra and DFT and ab initio calculations on monomeric and dimeric structures of 3,5-pyridinedicarboxylic acid. J Mol Struct 1027:1–14. doi:10.1016/j.molstruc.2012.05.048

    Article  Google Scholar 

  44. Mech A, Monguzzi A, Meinardi F, Mezyk J, Macchi G, Tubino R (2010) Sensitized NIR erbium(III) emission in confined geometries: a new strategy for light emitters in telecom applications. J Am Chem Soc 132(13):4574–4576. doi:10.1021/ja907927s

    Article  Google Scholar 

  45. Puntus LN, Zolin VF, Babushkina TA, Kutuza IB (2004) Luminescence properties of isomeric and tautomeric lanthanide pyridinedicarboxylates. J Alloys Compd 380(1–2):310–314. doi:10.1016/j.jallcom.2004.03.059

    Article  Google Scholar 

  46. Truillet C, Lux F, Brichart T, Lu GW, Gong QH, Perriat P, Martini M, Tillement O (2013) Energy transfer from pyridine molecules towards europium cations contained in sub 5-nm Eu2O3 nanoparticles: can a particle be an efficient multiple donor–acceptor system? J Appl Phys 114(11):114308. doi:10.1063/1.4821428

    Article  Google Scholar 

  47. Łyszczek R, Mazur L (2012) Polynuclear complexes constructed by lanthanides and pyridine-3,5-dicarboxylate ligand: structures, thermal and luminescent properties. Polyhedron 41(1):7–19. doi:10.1016/j.poly.2012.04.009

    Article  Google Scholar 

  48. van den Hoven GN, Snoeks E, Polman A, van Dam C, van Uffelen JWM, Smit MK (1996) Upconversion in Er-implanted Al2O3 waveguides. J Appl Phys 79(3):1258. doi:10.1063/1.361020

    Article  Google Scholar 

  49. Rönn J, Karvonen L, Kauppinen C, Perros AP, Peyghambarian N, Lipsanen H, Säynätjoki A, Sun Z (2016) Atomic layer engineering of Er-ion distribution in highly doped Er:Al2O3 for photoluminescence enhancement. ACS Photonics 3(11):2040–2048. doi:10.1021/acsphotonics.6b00283

    Article  Google Scholar 

Download references

Acknowledgements

The present work has received funding from the European Research Council under the European Union’s Seventh Framework Programme (FP/2007-2013)/ERC Advanced Grant Agreement (No. 339478). Furthermore, the authors at the Ruhr-University Bochum thank the Deutsche Forschungsgemeinschaft within the DFG-SFB-TR87 and the EU-COST project HERALD for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Anjana Devi or Maarit Karppinen.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 208 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mai, L., Giedraityte, Z., Schmidt, M. et al. Atomic/molecular layer deposition of hybrid inorganic–organic thin films from erbium guanidinate precursor. J Mater Sci 52, 6216–6224 (2017). https://doi.org/10.1007/s10853-017-0855-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0855-6

Keywords

Navigation