Skip to main content
Log in

A numerical model for a hypoeutectic alloy droplet deposition with non-equilibrium solidification

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A numerical model is developed to study the splat morphology and solidification characteristics of a molten hypoeutectic alloy droplet impinging and solidifying on a substrate. The study finds application in optimization and improvement of metal additive manufacturing processes such as solder jetting, microcasting, sputtering and 3D printing. The major mathematical and numerical challenges include solution of multiphase flow governing equations, interface tracking and modeling the non-equilibrium (rapid) solidification on a macroscopic domain. The free surface is tracked using a volume of fluid method with a piecewise linear interface construction while the mushy phase is modelled as a pseudo porous medium. An enthalpy formulation of the energy equation is coupled with the solute transport equation and the system is solved simultaneously for the temperature and concentration profiles until the eutectic point is reached; beyond which a special treatment is employed till complete solidification. Segregation models (with back diffusion) and eutectic phase diagram are incorporated in the solution procedure. The splat morphology, concentration profiles and microstructural properties are closely examined with emphasis on the convective effects and eutectic formation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13
Figure 14
Figure 15
Figure 16
Figure 17

Similar content being viewed by others

References

  1. Cannon JR (1984) The one-dimensional heat equation. Addison Wesley, Boston, pp 281–326

    Book  Google Scholar 

  2. Madejski J (1976) Solidification of droplets on a cold surface. Int J Heat Mass Transf 19:1009–1013

    Article  Google Scholar 

  3. Aceves SM, Shapiro AB, Sahai V (1999) An accuracy evaluation for the Madejski splat-quench solidification model. ASME Int Mech Eng Congr Expos, Nashville, pp 273–280

    Google Scholar 

  4. Rangel RH, Bian X (1997) Metal-droplet deposition model including liquid deformaion and substrate remelting. Int J Heat Mass Transf 40:2549–2564

    Article  Google Scholar 

  5. Pasandideh-Fard M, Bhola R, Chandra S, Mostaghimi J (1998) Deposition of tin droplets on a steel plate: simulations and experiments. Int J Heat Mass Transf 40:2929–2945

    Article  Google Scholar 

  6. Liu H (2000) Science and engineering of droplets. Noyes Publications, New York, pp 193–232

    Google Scholar 

  7. Brent AD, Voller VR, Reid KJ (1988) Enthalpy-porosity technique for modeling convection-diffusion phase change: application to the melting of a pure metal. Numer Heat Transf 3:297–318

    Google Scholar 

  8. Attinger D, Haferi S, Zhao Z, Poulikakos D (2000) Transport phenomenon in the impact of a molten droplet on a surface: part II: heat transfer and solidfication. Ann Rev Heat Transf 11:145–206

    Article  Google Scholar 

  9. Ni J, Beckermann C (1991) A volume-averaged two phase model for transport phenomenon during solidification. Metall Trans B 22(3):349–361

    Article  Google Scholar 

  10. Voller VR, Brent AD, Prakash C (1989) The modeling of heat, mass and solute transport in solidification systems. Int J Heat Mass Transf 32(9):1719–1731

    Article  Google Scholar 

  11. Voller VR (2006) Numerical methods for phase change problems, in handbook of numerical heat transfer, 2nd edn. Wiley, Hoboken, pp 593–622

    Google Scholar 

  12. Porter DA, Easterling KE, Sherif M (2009) Phase transformations in metals and alloys, 3rd edn. CRC Press, Boca Raton, pp 209–226

    Google Scholar 

  13. Ramanuj V (2016) Numerical modeling of an alloy droplet deposition with non-equilirium solidification. University of Texas at Arlington, Arlington, pp 28–70

    Google Scholar 

  14. Tong AY, Holt BR (1997) Numerical study on the solidification of liquid metal droplets impacting onto a substrate. Numer Heat Transf Part A Appl 8:797–817

    Article  Google Scholar 

  15. Kothe DB, Mjolsness RC, Torrey MD (1991) RIPPLE: a computer program for incompressible flows with free surfaces. Los Alamos National Laboratory, Technical Report LA-12007-MS, Los Alamos, pp 3–35

  16. Carman PC (1997) Fluid flow through granular beds. Chem Eng Res Des 75:32–48

    Article  Google Scholar 

  17. Groulx D, Kheirabadi AC (2015) The effect of the mushy zone constant on simulated phase change heat transfer. In ICHMT International Symposium on Advances in Computational Heat Transfer, Piscataway

  18. Brackbill JU, Kothe DB, Zemach C (1992) A continuum method for modeling surface tension. J Comput Phys 100(2):335–354

    Article  Google Scholar 

  19. Kershaw DS (1978) The incomplete Cholesky—Conjugate gradient method for the iterative solution of systems of linear equations. J Comput Phys 26(1):43–65

    Article  Google Scholar 

  20. Youngs DL (1982) Time-dependent multi-material flow with large fluid distortion. Numer Method Fluid Dyn 24:273–285

    Google Scholar 

  21. Rudman M (1997) Volume-tracking methods for interfacial flow calculations. Int J Numer Method Fluid 24(7):671–691

    Article  Google Scholar 

  22. Voller VR, Cross M, Markatos NC (1987) An enthalpy method for convection/diffusion phase change. Int J Numer Method Eng 1:271–284

    Article  Google Scholar 

  23. Patankar S (1992) Numerical heat transfer and fluid flow. CRC Press, Boston, pp 79–112

    Google Scholar 

  24. Voller VR (1997) A similarity solution for the solidification of a multicomponent alloy. Int J Heat Mass Transf 40(12):2869–2877

    Article  Google Scholar 

  25. Kobayashi S (1988) Solute redistribution during solidification with diffusion in solid phase: a theoretical analysis. J Cryst Growth 88:87–96

    Article  Google Scholar 

  26. Attinger D, Zhao Z, Poulikakos D (2000) An experimental study of molten microdroplet surface deposition and solidification: transport behavior and wetting angle dynamics. J Heat Transf 122:544–556

    Article  Google Scholar 

  27. Tian D, Wang C, Tian Y (2008) Effect of solidification on solder bump formation in solder jet process: simulation and experiment. Trans Nonferrous Met Soc Chin 18:1201–1208

    Article  Google Scholar 

  28. Ramanuj V, Tong AY (2016) Simultaneous spreading and solidification of an impacting molten droplet with substrate remelting. J Heat Transf 139(3):032301–032311

    Article  Google Scholar 

  29. Pasandideh-Fard M (1998) Droplet impact and solidification in a thermal spray process. University of Toronto, Toronto, pp 110–135

    Google Scholar 

  30. Markworth AJ, Saunders JH (1992) An improved velocity field for the Madejski splat quench solidification Model. Int J Heat Mass Transf 19:1836–1837

    Article  Google Scholar 

  31. Spinelli JE, Rocha OF, Garcia A (2006) The influence of melt convection on dendritic spacing of downward unsteady-state directionally solodified Sn–Pb alloys. Mater Res 9(1):51–57

    Article  Google Scholar 

  32. Cadirli E, Gunduz M (2000) The dependence of lamellar spacing on growth rate and temperature gradient in the lead-tin eutectic alloy. J Mater Process Technol 97:74–81

    Article  Google Scholar 

Download references

Acknowledgement

The authors are thankful to The University of Texas at Arlington and The Texas Advanced Computing Center for providing the necessary computational resources.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vimal Ramanuj.

Appendix

Appendix

A uniform mesh was used for the study. Figure 18 the grid refinement results based on the convergence of free surface, spread factor and splat thickness. 0.02 mm × 0.02 mm was selected for the present analysis.

Figure 18
figure 18

Grid refinement test results

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ramanuj, V., Tong, A.Y. A numerical model for a hypoeutectic alloy droplet deposition with non-equilibrium solidification. J Mater Sci 52, 6034–6049 (2017). https://doi.org/10.1007/s10853-017-0842-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0842-y

Keywords

Navigation