Skip to main content
Log in

Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

It is well established that magnesium has a considerable potential for use as a biodegradable material. This report describes the effect of processing by severe plastic deformation (SPD) on the grain refinement, mechanical behavior, biocompatibility and corrosion behavior of commercial purity magnesium. The material was received as cast slabs and processed by rolling, equal-channel angular pressing and high-pressure torsion to produce samples with average grain sizes in the range of ~0.5–300 μm. The results show that severe plastic deformation does not affect the biocompatibility. However, the corrosion behavior is affected by the processing route. Specifically, SPD processing leads to general corrosion as opposed to localized corrosion in the as-cast and hot-rolled condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Hanzi AC, Gerber I, Schinhammer M, Loffler JF, Uggowitzer PJ (2010) On the in vitro and in vivo degradation performance and biological response of new biodegradable Mg–Y–Zn alloys. Acta Biomater 6:1824–1833

    Article  Google Scholar 

  2. Witte F, Hort N, Vogt C, Cohen S, Kainer KU, Willumeit R, Feyerabend F (2008) Degradable biomaterials based on magnesium corrosion. Curr Opin Solid State Mater Sci 12:63–72

    Article  Google Scholar 

  3. Witte F, Kaese V, Haferkamp H, Switzer E, Meyer-Lindenberg A, Wirth CJ, Windhagen H (2005) In vivo corrosion of four magnesium alloys and the associated bone response. Biomaterials 26:3557–3563

    Article  Google Scholar 

  4. Zberg B, Ugowitzer PJ, Loffler JF (2009) MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants. Nat Mater 8(11):887–891

    Article  Google Scholar 

  5. Kirklan NT (2012) Magnesium biomaterials: past, present and future. Corros Eng Sci Technol 47:322–328

    Article  Google Scholar 

  6. Bahl S, Suwas S, Chatterjee K (2014) The control of crystallographic texture in the use of magnesium as a resorbable biomaterial. RSC Adv 4:55677–55684

    Article  Google Scholar 

  7. Xin R, Li B, Li L, Liu Q (2011) Influence of texture on corrosion rate of AZ31 Mg alloy in 3.5 wt% NaCl. Mater Des 32:4548–4552

    Article  Google Scholar 

  8. Argade GR, Panigrahi SK, Mishra RS (2012) Effects of grain size on the corrosion resistance of wrought magnesium alloys containing neodymium. Corros Sci 58:145–151

    Article  Google Scholar 

  9. Saha P, Roy M, Datta MK, Lee B, Kumta PN (2015) Effects of grain refinement on the biocorrosion and in vitro bioactivity of magnesium. Mater Sci Eng C 57:294–303

    Article  Google Scholar 

  10. Gao JH, Guan SK, Ren ZW, Sun YF, Zhu SJ, Wang B (2011) Homogeneous corrosion of high pressure torsion treated Mg–Zn–Ca alloy in simulated body fluid. Mater Lett 65:691–693

    Article  Google Scholar 

  11. Valiev RZ, Islamgaliev RK, Alexandrov IV (2000) Bulk nanostructured materials from severe plastic deformation. Prog Mater Sci 45:103–187

    Article  Google Scholar 

  12. Valiev RZ, Langdon TG (2006) Principles of equal-channel angular pressing as a processing tool for grain refinement. Prog Mater Sci 51:881–981

    Article  Google Scholar 

  13. Zhilyaev AP, Langdon TG (2008) Using high-pressure torsion for metal processing: fundamentals and applications. Prog Mater Sci 53(6):893–979

    Article  Google Scholar 

  14. Birbilis N, Ralston KD, Virtanen S, Fraser HL, Davies CHJ (2010) Grain character influences on corrosion of ECAPed pure magnesium. Corros Eng Sci Technol 45:224–230

    Article  Google Scholar 

  15. Figueiredo RB, Poggiali FSJ, Silva CLP, Cetlin PR, Langdon TG (2016) The influence of grain size and strain rate on the mechanical behavior of pure magnesium. J Mater Sci 51:3013–3024. doi:10.1007/s10853-015-9612-x

    Article  Google Scholar 

  16. Gan WM, Zheng MY, Chang H, Wang XJ, Qiao XG, Wu K, Schwebke B, Brokmeier H-G (2009) Microstructure and tensile property of the ECAPed pure magnesium. J Alloys Compd 470:256–262

    Article  Google Scholar 

  17. Yamashita A, Horita Z, Langdon TG (2001) Improving the mechanical properties of magnesium and a magnesium alloy through severe plastic deformation. Mater Sci Eng A 300:142–147

    Article  Google Scholar 

  18. Huang Y, Figueiredo RB, Baudin T, Brisset F, Langdon TG (2012) Evolution of strength and homogeneity in a magnesium AZ31 alloy processed by high-pressure torsion at different temperatures. Adv Eng Mater 14(11):1018–1026

    Article  Google Scholar 

  19. Zhilyaev AP, Kim B-K, Nurislamova GV, Baró MD, Szpunar JA, Langdon TG (2002) Orientation imaging microscopy of ultrafine-grained nickel. Scr Mater 46(8):575–580

    Article  Google Scholar 

  20. Zhilyaev AP, Nurislamova GV, Kim B-K, Baró MD, Szpunar JA, Langdon TG (2003) Experimental parameters influencing grain refinement and microstructural evolution during high-pressure torsion. Acta Mater 51(3):753–765

    Article  Google Scholar 

  21. Wongsa-Ngam J, Kawasaki M, Langdon TG (2013) A comparison of microstructures and mechanical properties in a Cu–Zr alloy processed using different SPD techniques. J Mater Sci 48(13):4653–4660. doi:10.1007/s10853-012-7072-0

    Article  Google Scholar 

  22. Figueiredo RB, Langdon TG (2008) Record superplastic ductility in a magnesium alloy processed by equal-channel angular pressing. Adv Eng Mater 10:37–40

    Article  Google Scholar 

  23. Xia K, Wang JT, Wu X, Chen G, Gurvan M (2005) Equal channel angular pressing of magnesium alloy AZ31. Mater Sci Eng A 410–411:324–327

    Article  Google Scholar 

  24. Ge Q, Dellasega D, Demir AG, Vedani M (2013) The processing of ultrafine-grained Mg tubes for biodegradables stents. Acta Biomater 9:8604–8610

    Article  Google Scholar 

  25. Figueiredo RB, Sabbaghianrad S, Giwa A, Greer JR, Langdon TG (2017) Evidence for exceptional low temperature ductility in polycrystalline magnesium processed by severe plastic deformation. Acta Mater 122:322–331

    Article  Google Scholar 

  26. Song D, Ma A, Jiang J, Lin P, Yang D, Fan J (2010) Corrosion behavior of equal-channel-angular-pressed pure magnesium in NaCl aqueous solution. Corros Sci 52:481–490

    Article  Google Scholar 

  27. Wang H, Estrin Y, Fu H, Song G, Zúberová Z (2007) The effect of pre-processing and grain structure on the bio-corrosion and fatigue resistance of magnesium alloy AZ31. Adv Eng Mater 9(11):967–972

    Article  Google Scholar 

  28. Alvarez-Lopez M, Pereda MD, del Valle JA, Fernandez-Lorenzo M, Garcia-Alonso MC, Ruano OA, Escudero ML (2010) Corrosion behaviour of AZ31 magnesium alloy with different grain sizes in simulated biological fluids. Acta Biomater 6:1763–1771

    Article  Google Scholar 

  29. Ralston KD, Birbilis N, Davies CHJ (2010) Revealing the relationship between grain size and corrosion rate of metals. Scr Mater 63:1201–1204

    Article  Google Scholar 

  30. Iwahashi Y, Wang J, Horita Z, Nemoto M, Langdon TG (1996) Principle of equal-channel angular pressing for the processing of ultra-fine grained materials. Scr Mater 35(2):143–146

    Article  Google Scholar 

  31. Furukawa M, Iwahashi Y, Horita Z, Nemoto M, Langdon TG (1998) The shearing characteristics associated with equal-channel angular pressing. Mater Sci Eng A 257(2):328–332

    Article  Google Scholar 

  32. Song G, Atrens A, StJohn D (2001) An hydrogen evolution method for the estimation of the corrosion rate of magnesium alloys. Magnes Technol 2001:255–262

    Google Scholar 

  33. Metikoš-Hukovic M, Babic R, Grubac Z, Brinic S (1994) Impedance spectroscopic study of aluminium and Al-alloys in acid solution: inhibitory action of nitrogen containing compounds. J Appl Electrochem 24:772–778

    Article  Google Scholar 

  34. Farias CA, Lins VFC (2011) Corrosion resistance of steels used in alcohol and sugar industry. Chem Eng Technol 34(9):1393–1401

    Article  Google Scholar 

  35. Shi Z, Liu M, Atrens A (2010) Measurement of the corrosion rate of magnesium alloys using Tafel extrapolation. Corros Sci 52:579–588

    Article  Google Scholar 

  36. Hermawan H, Dubé D, Mantovani D (2010) Developments in metallic biodegradable stents. Acta Biomater 6:1693–1697

    Article  Google Scholar 

  37. Agnew SR, Horton JA, Lillo TM, Brown DW (2004) Enhanced ductility in strongly textured magnesium produced by equal channel angular processing. Scr Mater 50:377–381

    Article  Google Scholar 

  38. Mukai T, Yamanoi M, Watanabe H, Higashi K (2001) Ductility enhancement in AZ31 magnesium alloy by controlling its grain structure. Scr Mater 45:89–94

    Article  Google Scholar 

  39. Somekawa H, Mukai T (2015) Hall-petch breakdown in fine-grained pure magnesium at low strain rates. Metall Mater Trans 46A:894–902

    Article  Google Scholar 

  40. Li J, Xu W, Wu X, Ding H, Xia K (2011) Effects of grain size on compressive behaviour in ultrafine grained pure Mg processed by equal channel angular pressing at room temperature. Mater Sci Eng A 528:5993–5998

    Article  Google Scholar 

  41. Agha NA, Willumeit-Römer R, Laipple D, Luthringer B, Feyerabend F (2016) The degradation interface of magnesium based alloys in direct contact with human primary osteoblast cells. PLoS ONE 11(6):e0157874

    Article  Google Scholar 

  42. Figueiredo RB, Langdon TG (2010) Grain refinement and mechanical behavior of a magnesium alloy processed by ECAP. J Mater Sci 45:4827–4836. doi:10.1007/s10853-010-4589-y

    Article  Google Scholar 

Download references

Acknowledgements

The authors acknowledge Prof. A.M. Goes of the Department of Immunology and Biochemistry (UFMG) for providing the human osteosarcoma cell line used in this work. The authors acknowledge support from CNPq, FAPEMIG and PPGEM. One of the authors acknowledges support from the European Research Council under ERC Grant Agreement No. 267464-SPDMETALS (TGL).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto B. Figueiredo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Silva, C.L.P., Oliveira, A.C., Costa, C.G.F. et al. Effect of severe plastic deformation on the biocompatibility and corrosion rate of pure magnesium. J Mater Sci 52, 5992–6003 (2017). https://doi.org/10.1007/s10853-017-0835-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0835-x

Keywords

Navigation