Skip to main content
Log in

Microstructure characterization, stress–strain behavior, superelasticity and shape memory effect of Cu–Al–Mn–Cr shape memory alloys

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this study, the Cr was added into Cu–Al–Mn alloys for replacing Cu and Mn, and the microstructure, martensitic transformation, stress–strain behavior, superelasticity and shape memory effect of quaternary Cu–Al–Mn–Cr shape memory alloys were investigated. All the studied alloys exhibit a mixed microstructure consisted of dominant L21 parent, small amounts of A2(Cr) and 2H(γ1′) martensite, as well as a reversible martensitic transformation. Although the alloys are main L21 parent before deformation, partial stress-induced 2H(γ1′) martensite can be stabilized and retained after unloading. Therefore, the same alloy under a certain deformation temperature not only exhibits superelasticity property during deformation, but also the deformed alloy also shows shape memory effect when heated. The results further show that Cu–12.8Al–7.5Mn–2.5Cr alloy has a good superelasticity strain of 2.9% as well as a shape memory effect of 1.5%. Cu–12.7Al–6.9Mn–1.8Cr alloy possesses much the best superelasticity strain close to 5.0% under a pre-deformation of 10% and a shape memory effect of 2.0%. The best shape memory effect up to 2.5% with 10% of pre-deformation and a superelasticity strain of 2.8% are obtained in Cu–12.5Al–5.8Mn–4.1Cr alloy.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Otsuka K, Wayman CM (1998) Shape memory materials. Cambridge University Press, Cambridge

    Google Scholar 

  2. Otsuka K, Shimizu K (1986) Pseudoelasticity and shape memory effects in alloys. Int Met Rev 31:93–114

    Article  Google Scholar 

  3. Otsuka K, Ren XB (1999) Recent developments in the research of shape memory alloys. Intermetallics 7:511–528

    Article  Google Scholar 

  4. Otsuka K, Ren X (2005) Physical metallurgy of Ti–Ni-based shape memory alloys. Prog Mater Sci 50:511–678

    Article  Google Scholar 

  5. Bonnot E, Romero R, Morin M et al (2008) In-situ observations of a martensitic transformation in a Cu–Zn–Al single crystal driven by stress or strain. J Mater Sci 43:3832. doi:10.1007/s10853-007-2218-1

    Article  Google Scholar 

  6. Sarı U, Kırındı T (2008) Effects of deformation on microstructure and mechanical properties of a Cu–Al–Ni shape memory alloy. Mater Charact 59:920–929

    Article  Google Scholar 

  7. Araki Y, Endo T, Omori T, Sutou Y In-situ observations of a martensitic transformation in a Cu–Zn–Al single crystal driven by stress or strain at springer link, Koetaka Y, Kainuma R et al (2011) Potential of superelastic Cu–Al–Mn alloy bars for seismic applications. Earthq Eng Struct Dyn 40:107–115

    Article  Google Scholar 

  8. Stanford N, Dunne DP (2007) Martensite/particle interactions and the shape memory effect in an Fe–Mn–Si-based alloy. J Mater Sci 42:4334–4343. doi:10.1007/s10853-006-0686-3

    Article  Google Scholar 

  9. Liu Y, Van Humbeeck J, Stalmans R, Delaey L (1997) Some aspects of the properties of NiTi shape memory alloy. J Alloy Compd 247:115–121

    Article  Google Scholar 

  10. Kainuma R, Satoh N, Liu XJ, Ohnuma I, Ishida K (1998) Phase equilibria and Heusler phase stability in the Cu-rich portion of the Cu–Al–Mn system. J Alloy Compd 266:191–200

    Article  Google Scholar 

  11. Xu HB (2001) Cu-based high-temperature shape-memory alloys and their thermal stability. Mater Sci Forum 394–3:375–382

    Google Scholar 

  12. Kainuma R, Takahashi S, Ishida K (1996) Thermoelastic martensite and shape memory effect in ductile Cu–Al–Mn alloys. MMTA 27:2187

    Article  Google Scholar 

  13. Yang SY, Su Y, Wang CP, Liu XJ (2014) Microstructure and properties of Cu–Al–Fe high-temperature shape memory alloys. Mater Sci Eng B 185:67–73

    Article  Google Scholar 

  14. Matlakhova LA, Pereira EC, Matlakhov AN, Monteiroa SN, Toledo R (2008) Mechanical behavior and fracture characterization of a monocrystalline Cu–Al–Ni subjected to thermal cycling treatments under load. Mater Charact 59:1630–1637

    Article  Google Scholar 

  15. Nakata Y, Tadaki T, Shimizu K (1985) Thermal cycling effects in a Cu–Al–Ni shape memory alloy. J Jpn Inst Met 26:646–652

    Article  Google Scholar 

  16. Wang CP, Su Y, Yang SY, Shi Z, Liu XJ (2014) A new type of Cu–Al–Ta shape memory alloy with high martensitic transformation temperature. Smart Mater Struct 23:025018–1–025018–7

    Google Scholar 

  17. Kainuma R, Takahashi S, Ishida K (1995) Ductility shape memory alloys of the Cu–Al–Mn system. J de Phys IV 5:961–966

    Google Scholar 

  18. Mallik US, Sampath V (2008) Influence of aluminum and manganese concentration on the shape memory characteristics of Cu–Al–Mn shape memory alloys. J Alloy Compd 59:142–147

    Article  Google Scholar 

  19. Mallik US, Sampath V (2008) Effect of alloying on microstructure and shape memory characteristics of Cu–Al–Mn shape memory alloys. Mater Sci Eng A 481–482:680–683

    Article  Google Scholar 

  20. Oliveira JP, Panton B et al (2016) Laser welded superelastic Cu–Al–Mn shape memory alloy wires. Mater Des 90:122–128

    Google Scholar 

  21. Sutou Y, Omori T, Okamoto T, Kainuma R, Ishida K (2001) Effect of grain refinement on the mechanical and shape memory properties of Cu–Al–Mn base alloys. J Phys IV France 11:185–190

    Article  Google Scholar 

  22. Sutou Y, Omori T, Kainuma R, Ishida K (2013) Grain size dependence of pseudoelasticity in polycrystalline Cu–Al–Mn-based shape memory sheets. Acta Mater 61:3842–3850

    Article  Google Scholar 

  23. Oliveira JP, Zeng Z et al (2016) Improvement of damping properties in laser processed superelastic Cu–Al–Mn shape memory alloys. Mater Des 98:280–284

    Google Scholar 

  24. Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K (2009) Effects of aging on stress-induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater 57:5759–5770

    Article  Google Scholar 

  25. Sutou Y, Koeda N, Omori T, Kainuma R, Ishida K (2009) Effects of aging on bainitic and thermally induced martensitic transformation in ductile Cu–Al–Mn-based shape memory alloys. Acta Mater 57:5748–5758

    Article  Google Scholar 

  26. Sutou Y, Kainuma R, Ishida K (1999) Effect of alloying elements on the shape memory properties of ductile Cu–Al–Mn alloys. Mater Sci Eng A 273–275:375–379

    Article  Google Scholar 

  27. Mallik US, Sampath V (2009) Influence of quaternary alloying additions on transformation temperatures and shape memory properties of Cu–Al–Mn shape memory alloy. J Alloy Compd 469:156–163

    Article  Google Scholar 

  28. Ma YQ, Yang SY, Liu Y, Liu XJ (2009) The ductility and shape-memory properties of Ni–Mn–Co–Ga high-temperature shape-memory alloys. Acta Mater 57:3232–3241

    Article  Google Scholar 

  29. Canbay CA, Gudeloglu S, Genc ZK (2015) Investigation of the enthalpy/entropy variation and structure of Cu–Al–Mn–Fe shape memory alloys. Int J Thermophys 36:783–794

    Article  Google Scholar 

  30. Ortin J, Planes A (1988) Thermodynamic analysis of thermal measurements in thermoelastic martensitic transformations. Acta Metall 36:1873–1889

    Article  Google Scholar 

  31. Canbay CA, Aydogdu A (2013) Thermal analysis of Cu–14.82 wt% Al–0.4 wt% Be shape memory alloy. J Therm Anal Calorim 113:731–737

    Article  Google Scholar 

  32. Kainuma R et al (2006) Magnetic-field-induced shape recovery by reverse phase transformation. Nature 439:957–959

    Article  Google Scholar 

  33. Tanaka Y et al (2010) Ferrous polycrystalline shape-memory alloy showing huge superelasticity. Science 327:1488–1490

    Article  Google Scholar 

  34. Otsuka K, Wayman CM, Nakai K, Sakamota H, Shimizu K (1976) Superelasticity effects and stress-induced martensitic transformations in Cu–Al–Ni alloys. Acta Metall 24:207–226

    Article  Google Scholar 

  35. Picornell C, Pons J, Cesari E (2001) Stabilization of martensite by applying compressive stress in Cu–Al–Ni single crystals. Acta Mater 49:4221–4230

    Article  Google Scholar 

  36. Sedmák P, Šittner P, Pilch J, Curfs C (2015) Instability of cyclic superelastic deformation of NiTi investigated by synchrotron X-ray diffraction. Acta Mater 94:257–270

    Article  Google Scholar 

  37. Oliveira JP, Miranda RM, Schell N, Fernandes FMB (2016) High strain and long duration cycling behavior of laser welded NiTi sheets. Int J Fatigue 83:195–200

    Article  Google Scholar 

  38. Oliveira JP, Fernandes FMB, Schell N, Miranda RM (2016) Martensite stabilization during superelastic cycling of laser welded NiTi plates. Mater Lett 171:273–276

    Article  Google Scholar 

  39. Yang SY, Omori T, Wang CP, Liu Y, Makoto N et al (2016) A jumping shape memory alloy under heat. Sci Rep 6:21754

    Article  Google Scholar 

  40. Villars P, Calvert LD (1991) Pearson’s handbook of crystallographic data for intermetallic phases, 2nd edn. ASM, Materials Park

    Google Scholar 

  41. Massalski TB (1990) Binary alloy phase diagrams, 2nd edn. ASM International, Metals Park

    Google Scholar 

  42. Lee BJ (1993) A thermodynamic evaluation of the Cr–Mn and Fe–Cr–Mn systems. Metall Trans A 24A:1919–1933

    Article  Google Scholar 

  43. Omori T, Kusama T et al (2013) Abnormal grain growth induced by cyclic heat treatment. Science 341:1500–1502

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge the financial supports from the Fundamental Research Funds for the Central Universities, Grant number 20720160078, the National Natural Science Foundation of China, Grant numbers 51201145 and 51571168.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shuiyuan Yang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, S., Zhang, F., Wu, J. et al. Microstructure characterization, stress–strain behavior, superelasticity and shape memory effect of Cu–Al–Mn–Cr shape memory alloys. J Mater Sci 52, 5917–5927 (2017). https://doi.org/10.1007/s10853-017-0827-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0827-x

Keywords

Navigation