Skip to main content

Advertisement

Log in

Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

With the fast development of portable and wearable devices, flexible supercapacitor electrodes are widely researched. Here, comprehensive approaches were designed to introduce carbon nanotube (CNT) and/or MnO2 into activated carbon fiber felt (ACFF) using “dipping and drying” method. Differences on micro-morphologies and electrochemical characteristics for prepared textiles were compared. High-performance flexible MnO2/CNT/ACFF composite electrodes were synthesized by introducing CNT and MnO2/CNT fillers successively. Compared with original ACFF textiles, significant improvements in electrochemical performance were achieved. Areal capacitance, energy density and power density of the composite textiles reached as high as 4148 mF cm−2, 141 μWh cm−2 and 4466 μW cm−2, respectively. Furthermore, flexible supercapacitors were fabricated based on the composite textile electrodes and gel electrolytes. When being bent at different angles or suffering deformations such as bending for 100 cycles, the flexible supercapacitors preserve almost all the capacitance, which indicates the excellent flexibility of the composite textile electrode. This work provides various approaches to design composite textiles, and the prepared MnO2/CNT/ACFF composite textile may be a promising electrode material for high-performance flexible supercapacitors.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Yu Z, Tetard L, Zhai L, Thomas J (2015) Supercapacitor electrode materials: nanostructures from 0 to 3 dimensions. Energy Environ Sci 8:702–730

    Article  Google Scholar 

  2. Conway BE, Pell WG (2003) Double-layer and pseudocapacitance types of electrochemical capacitors and their applications to the development of hybrid devices. J Solid State Electrochem 7:637–644

    Article  Google Scholar 

  3. Dong L, Xu C, Li Y et al (2016) Flexible electrodes and supercapacitors for wearable energy storage: a review by category. J Mater Chem A 4:4659–4685

    Article  Google Scholar 

  4. Lee JA, Shin MK, Kim SH et al (2013) Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices. Nat Commun 4:1970

    Google Scholar 

  5. Fu Y, Cai X, Wu H et al (2012) Fiber supercapacitors utilizing pen ink for flexible/wearable energy storage. Adv Mater 24:5713–5718

    Article  Google Scholar 

  6. Yu D, Qian Q, Wei L et al (2015) Emergence of fiber supercapacitors. Chem Soc Rev 44:647–662

    Article  Google Scholar 

  7. Nyholm L, Nyström G, Mihranyan A et al (2011) Toward flexible polymer and paper-based energy storage devices. Adv Mater 23:3751–3769

    Google Scholar 

  8. Meng C, Liu C, Fan S (2009) Flexible carbon nanotube/polyaniline paper-like films and their enhanced electrochemical properties. Electrochem Commun 11:186–189

    Article  Google Scholar 

  9. Yan X, Tai Z, Chen J et al (2011) Fabrication of carbon nanofiber-polyaniline composite flexible paper for supercapacitor. Nanoscale 3:212–216

    Article  Google Scholar 

  10. Jost K, Perez CR, McDonough JK et al (2011) Carbon coated textiles for flexible energy storage. Energy Environ Sci 4:5060–5067

    Article  Google Scholar 

  11. Jost K, Dion G, Gogotsi Y (2014) Textile energy storage in perspective. J Mater Chem A 2:10776–10787

    Article  Google Scholar 

  12. Bao L, Li X (2012) Towards textile energy storage from cotton T-shirts. Adv Mater 24:3246–3252

    Article  Google Scholar 

  13. Gao Z, Yang W, Wang J et al (2015) Flexible all-solid-state hierarchical NiCo2O4/porous graphene paper asymmetric supercapacitors with an exceptional combination of electrochemical properties. Nano Energy 13:306–317

    Article  Google Scholar 

  14. Ji J, Zhang LL, Ji H et al (2013) Nanoporous Ni (OH)2 thin film on 3D ultrathin-graphite foam for asymmetric supercapacitor. ACS Nano 7:6237–6243

    Article  Google Scholar 

  15. Lei D, Song KH, Li XD et al (2017) Nanostructured polyaniline/kenaf-derived 3D porous carbon materials with high cycle stability for supercapacitor electrodes. J Mater Sci. doi:10.1007/s10853-016-0504-5

    Google Scholar 

  16. Gao Z, Song N, Zhang Y et al (2015) Cotton textile enabled, all-solid-state flexible supercapacitors. RSC Adv 5:15438–15447

    Article  Google Scholar 

  17. Zhou W, Cao X, Zeng Z et al (2013) One-step synthesis of Ni3S2 nanorod@ Ni(OH)2 nanosheet core-shell nanostructures on a three-dimensional graphene network for high-performance supercapacitors. Energy Environ Sci 6:2216–2221

    Article  Google Scholar 

  18. Gao Z, Song N, Li X (2015) Microstructure design of hybrid CoO@ NiO and graphene nano-architectures for flexible high performance supercapacitors. J Mater Chem A 3:14833–14844

    Article  Google Scholar 

  19. Hsu YK, Chen YC, Lin YG et al (2012) High-cell-voltage supercapacitor of carbon nanotube/carbon cloth operating in neutral aqueous solution. J Mater Chem 22:3383–3387

    Article  Google Scholar 

  20. Zhao Y, Liu J, Hu Y et al (2013) Highly compression-tolerant supercapacitor based on polypyrrole-mediated graphene foam electrodes. Adv Mater 25:591–595

    Article  Google Scholar 

  21. Dubal DP, Kim JG, Kim Y et al (2014) Supercapacitors based on flexible substrates: an overview. Energy Technol 2:325–341

    Article  Google Scholar 

  22. Yuan L, Lu XH, Xiao X et al (2011) Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. ACS Nano 6:656–661

    Article  Google Scholar 

  23. Hu L, Pasta M, Mantia FL et al (2010) Stretchable, porous, and conductive energy textiles. Nano Lett 10:708–714

    Article  Google Scholar 

  24. He Y, Chen W, Li X et al (2012) Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. ACS Nano 7:174–182

    Article  Google Scholar 

  25. Dong L, Xu C, Li Y et al (2016) Simultaneous production of high-performance flexible textile electrodes and fiber electrodes for wearable energy storage. Adv Mater 28:1675–1681

    Article  Google Scholar 

  26. Dong L, Xu C, Yang Q et al (2015) High-performance compressible supercapacitors based on functionally synergic multiscale carbon composite textiles. J Mater Chem A 3:4729–4737

    Article  Google Scholar 

  27. Chmiola J, Largeot C, Taberna PL et al (2010) Monolithic carbide-derived carbon films for micro-supercapacitors. Science 328:480–483

    Article  Google Scholar 

  28. Liu W, Yan X, Lang J et al (2012) Flexible and conductive nanocomposite electrode based on graphene sheets and cotton cloth for supercapacitor. J Mater Chem 22:17245–17253

    Article  Google Scholar 

  29. Bélanger D, Brousse L, Long JW (2008) Manganese oxides: battery materials make the leap to electrochemical capacitors. Electrochem Soc Interface 17:49–52

    Google Scholar 

  30. Bello A, Fashedemi OO, Lekitima JN et al (2013) High-performance symmetric electrochemical capacitor based on graphene foam and nanostructured manganese oxide. AIP Adv 3:082118

    Article  Google Scholar 

  31. Tao J, Liu N, Li L et al (2014) Hierarchical nanostructures of polypyrrole@ MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. Nanoscale 6:2922–2928

    Article  Google Scholar 

  32. Ma SB, Nam KW, Yoon WS et al (2008) Electrochemical properties of manganese oxide coated onto carbon nanotubes for energy-storage applications. J Power Sources 178:483–489

    Article  Google Scholar 

  33. Ma SB, Ahn KY, Lee ES et al (2007) Synthesis and characterization of manganese dioxide spontaneously coated on carbon nanotubes. Carbon 45:375–382

    Article  Google Scholar 

  34. Li P, Yang Y, Shi E et al (2014) Core-double-shell, carbon nanotube@ polypyrrole@ MnO2 sponge as freestanding, compressible supercapacitor electrode. ACS Appl Mater Interfaces 6:5228–5234

    Article  Google Scholar 

  35. Jin X, Zhou W, Zhang S et al (2007) Nanoscale microelectrochemical cells on carbon nanotubes. Small 3:1513–1517

    Article  Google Scholar 

  36. Dong L, Hou F, Zhong X et al (2013) Comparison of drying methods for the preparation of carbon fiber felt/carbon nanotubes modified epoxy composites. Compos A 55:74–82

    Article  Google Scholar 

  37. Frackowiak E, Metenier K, Bertagna V et al (2000) Supercapacitor electrodes from multiwalled carbon nanotubes. Appl Phys Lett 77:2421–2423

    Article  Google Scholar 

  38. Zhao X, Chu BTT, Ballesteros B et al (2009) Spray deposition of steam treated and functionalized single-walled and multi-walled carbon nanotube films for supercapacitors. Nanotechnol 20:065605

    Article  Google Scholar 

  39. Zhang L, Aboagye A, Kelkar A et al (2014) A review: carbon nanofibers from electrospun polyacrylonitrile and their applications. J Mater Sci 49:463–480. doi:10.1007/s10853-013-7705-y

    Article  Google Scholar 

  40. Taberna PL, Simon P, Fauvarque JF (2003) Electrochemical characteristics and impedance spectroscopy studies of carbon-carbon supercapacitors. J Electrochem Soc 150:A292–A300

    Article  Google Scholar 

  41. Dong L, Xu C, Li Y et al (2016) Breathable and wearable energy storage based on highly flexible paper electrodes. Adv Mater 28:9313–9319

    Article  Google Scholar 

  42. Huang Y, Chen J, Yin Z et al (2011) Roll-to-roll processing of flexible heterogeneous electronics with low interfacial residual stress. IEEE Trans Compon Packag Manuf Technol 1:1368–1377

    Article  Google Scholar 

  43. Pasta M, La Mantia F, Hu L et al (2010) Aqueous supercapacitors on conductive cotton. Nano Res 3:452–458

    Article  Google Scholar 

  44. Yuan C, Hou L, Li D et al (2011) Synthesis of flexible and porous cobalt hydroxide/conductive cotton textile sheet and its application in electrochemical capacitors. Electrochim Acta 56:6683–6687

    Article  Google Scholar 

  45. Gao Z, Bumgardner C, Song N et al (2016) Cotton-textile-enabled flexible self-sustaining power packs via roll-to-roll fabrication. Nat Commun 7:11586

    Article  Google Scholar 

  46. Liu W, Song MS, Kong B et al (2016) Flexible and stretchable energy storage: recent advances and future perspectives. Adv Mater. doi:10.1002/adma.201603436

    Google Scholar 

  47. Shen L, Ding B, Nie P et al (2013) Advanced energy-storage architectures composed of spinel lithium metal oxide nanocrystal on carbon textiles. Adv Energy Mater 3:1484–1489

    Article  Google Scholar 

  48. Gao Z, Song N, Zhang Y et al (2015) Cotton-textile-enabled, flexible lithium-ion batteries with enhanced capacity and extended lifespan. Nano Lett 15:8194–8203

    Article  Google Scholar 

  49. Liu B, Zhang J, Wang X et al (2012) Hierarchical three-dimensional ZnCo2O4 nanowire arrays/carbon cloth anodes for a novel class of high-performance flexible lithium-ion batteries. Nano Lett 12:3005–3011

    Article  Google Scholar 

  50. Gao Z, Zhang Y, Song N et al (2016) Biomass-derived renewable carbon materials for electrochemical energy storage. Mater Res Lett. doi:10.1080/21663831.2016.1250834

    Google Scholar 

Download references

Acknowledgements

We acknowledge the financial support from National Key Basic Research (973) Program of China (No. 2014CB932400) and Shenzhen Technical Plan Projects (No. JCYJ20160301154114273). We also thank the financial support from CERC-CVC.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chengjun Xu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2281 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, J., Dong, L., Xu, C. et al. Comprehensive approaches to three-dimensional flexible supercapacitor electrodes based on MnO2/carbon nanotube/activated carbon fiber felt. J Mater Sci 52, 5788–5798 (2017). https://doi.org/10.1007/s10853-017-0813-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0813-3

Keywords

Navigation