Skip to main content
Log in

Fabrication of imidazolium-based poly(ionic liquid) microspheres and their electrorheological responses

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Imidazolium-based poly(ionic liquid) (PIL) microspheres of poly(1-butyl-3-vinylimidazolium tetrafluoroborate) (P[C4VIm][BF4]) were synthesized through a dispersion polymerization process, which was confirmed by 1H NMR, FT-IR and SEM. Rheological measurement at different electric field strengths indicated that the P[C4VIm][BF4] microspheres in dimethyl silicone oil (15 wt%) showed typical electrorheological (ER) performances including steady flow curves over the entire shear rate range. The ER fluid performed like a Newtonian fluid with very low shear viscosity at zero electric field, which implied the good affinity of the PIL particles with silicone oil. From the ER result, it is worth remarking that the good ER activity of the P[C4VIm][BF4]-based ER fluid is due to the high-density ion parts which can induce strong interfacial polarization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Sheng P, Wen W (2012) Electrorheological fluids: mechanisms, dynamics, and microfluidics applications. Annu Rev Fluid Mech 44:143–174

    Article  Google Scholar 

  2. Yin J, Zhao X, Xia X, Xiang L, Qiao Y (2008) Electrorheological fluids based on nano-fibrous polyaniline. Polymer 49:4413–4419

    Article  Google Scholar 

  3. Jang DS, Zhang WL, Choi HJ (2014) Polypyrrole-wrapped halloysite nanocomposite and its rheological response under electric fields. J Mater Sci 49:7309–7316. doi:10.1007/s10853-014-8443-5

    Article  Google Scholar 

  4. Madeja J, Kesy Z, Kesy A (2011) Application of electrorheological fluid in a hydrodynamic clutch. Smart Mater Struct 20:105005. doi:10.1088/0964-1726/20/10/105005

  5. Nguyen QH, Choi SB, Park YG (2012) An analytical approach to optimally design of electrorheological fluid damper for vehicle suspension system. Meccanica 47:1633–1647

    Article  Google Scholar 

  6. Tsuda K, Hirose Y, Ogura H, Otsubo Y (2010) Motion control of pattern electrode by electrorheological fluids. Colloids Surf A Physicochem Eng Asp 360:57–62

    Article  Google Scholar 

  7. Zhang MY, Wang LM, Wang X, Wu JB, Li JX, Gong XQ, Qin JH, Li WH, Wen WJ (2011) Microdroplet-based universal logic gates by electrorheological fluid. Soft Matter 7:7493–7497

    Article  Google Scholar 

  8. Bilyk VA, Korobko EV (2015) Research of the influence of dissipative heating on the performance characteristics of electrorheological shock absorbers. J Intell Mater Syst Struct 26:1906–1912

    Article  Google Scholar 

  9. Song XR, Hu AQ, Tan NY, Ma D, Lin YB (2011) Influence of amphiprotic groups on the electrorheological behavior of polymers. Mater Chem Phys 126:369–374

    Article  Google Scholar 

  10. McIntyre EC, Yang H, Green PF (2012) Electrorheology of polystyrene filler/polyhedral silsesquioxane suspensions. ACS Appl Mater Interf 4:2148–2153

    Article  Google Scholar 

  11. Jiang J, Tian Y, Meng Y (2011) Structure parameter of electrorheological fluids in shear flow. Langmuir 27:5814–5823

    Article  Google Scholar 

  12. Ko YG, Lee HJ, Chun YJ, Choi US, Yoo KP (2013) Positive and negative electrorheological response of alginate salts dispersed suspensions under electric field. ACS Appl Mater Interf 5:1122–1130

    Article  Google Scholar 

  13. Tian Y, Meng Y, Wen S (2001) Electrorheology of a zeolite/silicone oil suspension under dc fields. J Appl Phys 90:493–496

    Article  Google Scholar 

  14. Yin JB, Zhao XP (2002) Preparation and electrorheological activity of mesoporous rare-earth-doped TiO2. Chem Mater 14:4633–4640

    Article  Google Scholar 

  15. Choi HJ, Jhon MS (2009) Electrorheology of polymers and nanocomposites. Soft Matter 5:1562–1567

    Article  Google Scholar 

  16. Yilmaz H, Zengin H, Unal HI (2012) Synthesis and electrorheological properties of polyaniline/silicon dioxide composites. J Mater Sci 47:5276–5286. doi:10.1007/s10853-012-6413-3

    Article  Google Scholar 

  17. Liu YD, Choi HJ (2012) Electrorheological fluids: smart soft matter and characteristics. Soft Matter 8:11961–11978

    Article  Google Scholar 

  18. Lee S, Lee J, Hwang S, Yun J, Jang J (2015) Enhanced electro-responsive performance of double shell SiO2/TiO2 hollow nanoparticles. ACS Nano 9:4939–4949

    Article  Google Scholar 

  19. Zhang WL, Choi HJ (2014) Graphene oxide based smart fluids. Soft Matter 10:6601–6608

    Article  Google Scholar 

  20. Yin J, Chang R, Shui Y, Zhao X (2013) Preparation and enhanced electro-responsive characteristic of reduced graphene oxide/polypyrrole composite sheet suspensions. Soft Matter 9:7468–7478

    Article  Google Scholar 

  21. Hiamtup P, Sirivat A, Jamieson AM (2010) Strain-hardening in the oscillatory shear deformation of a dedoped polyaniline electrorheological fluid. J Mater Sci 45:1972–1976. doi:10.1007/s10853-009-4189-x

    Article  Google Scholar 

  22. Sedlačík M, Mrlík M, Pavlínek V, Sáha P, Quadrat O (2012) Electrorheological properties of suspensions of hollow globular titanium oxide/polypyrrole particles. Colloid Polym Sci 290:41–48

    Article  Google Scholar 

  23. Schwarz G, Maisch S, Ullrich S, Waenhofer J, Kurth DG (2013) Electrorheological fluids based on metallo-supramolecular polyelectrolyte-silicate composites. ACS Appl Mater Interf 5:4031–4034

    Google Scholar 

  24. Cho MS, Kim JW, Choi HJ (2005) Polyaniline and its modification for electroresponsive material under applied electric fields. Polym Adv Technol 16:352–356

    Article  Google Scholar 

  25. Gordon CM, Holbrey JD, Kennedy AR, Seddon KR (1998) Ionic liquid crystals: hexafluorophosphate salts. J Mater Chem 12:2627–2636

    Article  Google Scholar 

  26. Marwani HM (2010) Spectroscopic evaluation of chiral and achiral fluorescent ionic liquids. Cent Eur J Chem 8:946–952

    Google Scholar 

  27. David M (2011) Polymeric ionic liquids: broadening the properties and applications of polyelectrolytes. Prog Polym Sci 36:1629–1648

    Article  Google Scholar 

  28. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: an update. Prog Polym Sci 38:1009–1036

    Article  Google Scholar 

  29. Lee S, Cummins MD, Willing GA, Firestone MA (2009) Conductivity of ionic liquid-derived polymers with internal gold nanoparticle conduits. J Mater Chem 19:8092–8101

    Article  Google Scholar 

  30. Dong YZ, Yin JB, Zhao XP (2014) Microwave-synthesized poly(ionic liquid) particles: a new material with high electrorheological activity. J Mater Chem A 2:9812–9819

    Article  Google Scholar 

  31. Dong YZ, Yin JB, Zhao XP (2016) Microwave-assisted synthesis and high-performance anhydrous electrorheological characteristic of monodisperse poly(ionic liquid) particles with different size of cation/anion parts. Polymer 97:408–417

    Article  Google Scholar 

  32. Varma RS, Namboodiri VV (2001) An expeditious solvent-free route to ionic liquids using microwaves. Chem Commun 32:643–644

    Article  Google Scholar 

  33. Namboodiri VV, Varma RS (2002) An improved preparation of 1,3-dialkylimidazolium tetrafluoroborate ionic liquids using microwaves. Tetrahedron Lett 43:5381–5383

    Article  Google Scholar 

  34. Tokuda M, Minami H, Mizuta Y, Yamagami T (2012) Preparation of micron-sized monodisperse poly(ionic liquid) particles. Macromol Rapid Commun 33:1130–1134

    Article  Google Scholar 

  35. Wang D, Dimonie VL, Sudol ED (2002) Effect of PVP in dispersion and seeded dispersion polymerizations. J Appl Polym Sci 84:2721–2732

    Article  Google Scholar 

  36. Liu YD, Quan XM, Lee BM, Kim IG, Choi HJ (2014) Fabrication of ammonium persulfate coated silica microsphere via chemical grafting and its electrorheology. J Mater Sci 49:2618–2623. doi:10.1007/s10853-013-7961-x

    Article  Google Scholar 

  37. Yin JB, Zhao XP, Xiang LQ (2009) Enhanced electrorheology of suspensions containing sea-urchin-like hierarchical Cr-doped titania particles. Soft Mater 5:4687–4697

    Article  Google Scholar 

  38. Cho MS, Choi HJ, Jhon MS (2005) Shear stress analysis of a semiconducting polymer based electrorheological fluid system. Polymer 46:11484–11488

    Article  Google Scholar 

  39. Klingerberg DT, Swol FV, Zukoski CF (1991) The small shear rate response of electrorheological suspensions. II. Extension beyond the point-dipole limit. J Chem Phys 94:6170–6178

    Article  Google Scholar 

  40. Plachy T, Sedlacik M, Pavlinek V, Morávková Z, Hajná M, Stejskal J (2013) An effect of carbonization on the electrorheology of poly(p-phenylenediamine). Carbon 63:184–195

    Article  Google Scholar 

  41. Erol O, Unal HI (2015) Core/shell-structured, covalently bonded TiO2/poly(3,4-ethylenedioxythiophene) dispersions and their electrorheological response: the effect of anisotropy. RSC Adv 5:103159–103171

    Article  Google Scholar 

  42. Hao BN, Guo YX, Liu YD, Wang L-M, Choi HJ (2016) Highly transparent electrorheological fluids of silica nanoparticles: the effect of urea modification. J Mater Chem C 4:7875–7882

    Article  Google Scholar 

  43. Liu YD, Fang FF, Choi HJ (2011) Silica nanoparticle decorated polyaniline nanofiber and its electrorheological response. Soft Matter 7:2782–2789

    Article  Google Scholar 

  44. Cole KS, Cole RH (1941) Dispersion and absorption in dielectrics I. Alternating current characteristics. J Chem Phys 9:341–351

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 21403186), the Natural Science Foundation of Hebei Province (Nos. E2014203200 and E2015203257) and Colleges and Universities Science and Technology Research Project of Hebei Province (No. QN20131070).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenlin Zhang or Ying Dan Liu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Z., Zhang, Z., Hao, B.N. et al. Fabrication of imidazolium-based poly(ionic liquid) microspheres and their electrorheological responses. J Mater Sci 52, 5778–5787 (2017). https://doi.org/10.1007/s10853-017-0812-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0812-4

Keywords

Navigation