Skip to main content
Log in

Preparation and characterization of PEDOT:PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Hybrid composites have been prepared by solution processing method using various MWCNT concentrations in reduced graphene oxide/poly(3,4-ethylenedioxythiophene) polystyrene sulfonate (rGO-PEDOT:PSS) matrix. Structural and morphological characteristics of the prepared composite films have been characterized by X-ray diffraction, scanning electron microscopy, field emission scanning electron microscopy, Raman spectroscopy, UV–visible spectroscopy and Fourier transform infrared spectroscopy. The electrical transport measurement of composites conducted by four-point contacts shows increase in conductivity with MWCNT wt% in the composite system. The enhanced electrical conductivity as a result of improved dispersion of MWCNTs and rGO has been observed barely affecting the optical properties in the visible region. The observed improvement in electrical properties barely affecting its optical properties in the visible region can be attributed to synergistic effect of MWCNTs and rGO networks on the composite. This result suggests that such hybrid composite materials could be used as transparent conductor applications in optoelectronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10

Similar content being viewed by others

References

  1. Malliaras G, Friend R (2005) An organic electronics primer. Phys Today 58:53–58

    Article  Google Scholar 

  2. Mengistie DA, Wangc P-C, Chu C-W (2013) Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells. J Mater Chem A 1:9907–9915

    Article  Google Scholar 

  3. Bernards DA, Malliaras GG (2007) Steady-state and transient behavior of organic electrochemical transistors. Adv Funct Mater 17:3538–3544

    Article  Google Scholar 

  4. Kim N, Kee S, Lee SH, Lee BH, Kahng YH, Jo Y-R, Kim B-J, Lee K (2014) Highly conductive PEDOT:PSS nanofibrils induced by solution-processed crystallization. Adv Mater 26:2268–2272

    Article  Google Scholar 

  5. Wang J, Sun L, Mpoukouvalas K, Lienkamp K, Lieberwirth I, Fassbender B, Bonaccurso E, Brunklaus G, Muehlebach A, Beierlein T, Tilch R, Butt H-J, Wegner G (2009) Construction of redispersible polypyrrole core–shell nanoparticles for application in polymer electronics. Adv Mater 21:1137–1141

    Article  Google Scholar 

  6. Wang P-C, Liu L-H, Mengistie DA, Li K-H, Wend B-J, Liu T-S, Chu C-W (2013) Transparent electrodes based on conducting polymers for display applications. Displays 34:301–314

    Article  Google Scholar 

  7. Cairns DR, Witte RP, Sparacin DK, Sachsman SM, Paine DC, Crawford GP, Newton RR (2000) Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl Phys Lett 76:1425–1427

    Article  Google Scholar 

  8. Bouten PCP, Slikkerveer PJ, Leterrier Y (2005) Mechanics of ITO on plastic substrates for flexible displays. In: Crawford GP (ed) Flexible flat panel displays. Wiley, New York, pp 99–120

    Chapter  Google Scholar 

  9. Groenendaal L, Jonas F, Freitag D, Pielartzik H, Reynolds JR (2000) Poly(3,4-ethylenedioxythiophene) and its derivatives: past, present, and future. Adv Mater 12:481–494

    Article  Google Scholar 

  10. Aasmundtveit KE, Samuelsen EJ, Inganäs O, Pettersson LAA, Johansson T, Ferrer S (2000) Structural aspects of electrochemical doping and dedoping of poly(3,4-ethylenedioxy-thiophene). Synth Met 113:93–97

    Article  Google Scholar 

  11. Xia Y, Sun K, Ouyang J (2012) Highly conductive poly(3,4-ethylenedioxythiophene): poly(styrene sulfonate) films treated with an amphiphilic fluoro compound as the transparent electrode, of polymer solar cells. Energy Environ Sci 5:5325–5332

    Article  Google Scholar 

  12. Alemu D, Wei Hung-Yu, Ho K-C, Chu C-W (2012) Highly conductive PEDOT:PSS electrode by simple film treatment with methanol for ITO-free polymer solar cells. Energy Environ Sci 5:9662–9671

    Article  Google Scholar 

  13. Hatton RA, Blanchard NP, Tan LW, Latini G, Cacialli F, Ravi S, Silva P (2009) Oxidised carbon nanotubes as solution processable, high work function hole-extraction layers for organic solar cells. Org Electron 10:388–395

    Article  Google Scholar 

  14. Wang X, Li Q, Xie J, Jin Z, Wang J, Li Y, Jiang K, Fan S (2009) Fabrication of ultralong and electrically uniform single-walled carbon nanotubes on clean substrates. Nano Lett 9(9):3137–3141

    Article  Google Scholar 

  15. Ebbesen TW, Lezec HJ, Hiura H, Bennett JW, Ghaemi HF, Thio T (1996) Electrical conductivity of individual carbon nanotubes. Nature 382:54–56

    Article  Google Scholar 

  16. Kim P, Shi L, Majumdar A, McEuen PL (2001) Thermal transport measurements of individual multiwalled nanotubes. Phys Rev Lett 87:215502/215501–215502/215504

    Google Scholar 

  17. Yakobson BI, Brabec CJ, Bernholc J (1996) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514

    Article  Google Scholar 

  18. Overney G, Zhong W, Tomanek D (1993) Z., Structural rigidity and low frequency vibrational modes of long carbon tubules. Phys D 27:93–96

    Article  Google Scholar 

  19. Monirul Islam M, Aboutalebi SH, Cardillo D, Liu HK, Konstantinov K, Dou SX (2015) Self-assembled multifunctional hybrids: toward developing high-performance graphene-based architectures for energy storage devices. ACS Cent Sci 1(4):206–216

    Article  Google Scholar 

  20. Wimalasiri Y, Zou L (2013) Carbon nanotube/graphene composite for enhanced capacitive deionization performance. Carbon 59:464–471

    Article  Google Scholar 

  21. Yana J, Wei T, Fana Z, Qian W, Zhang M, Shena X, Wei F (2010) Preparation of graphene nanosheet/carbon nanotube/polyaniline composite as electrode material for supercapacitors. J Power Sources 195:3041–3045

    Article  Google Scholar 

  22. Cheng Q, Tang J, Shinya N, Qin L-C (2013) Polyaniline modified graphene and carbon nanotube composite electrode for asymmetric supercapacitors of high energy density. J Power Sources 241:423–428

    Article  Google Scholar 

  23. Li F, Cai K, Shen S, Chen S (2014) Preparation and thermoelectric properties of reduced graphene oxide/PEDOT:PSS composite films. Synth Met 197:58–61

    Article  Google Scholar 

  24. Wang G-F, Tao X-M, Wang R-X (2008) Fabrication and characterization of OLEDs using PEDOT:PSS and MWCNT nanocomposites. Compos Sci Technol 68:2837–2841

    Article  Google Scholar 

  25. Seekaew Y, Lokavee S, Phokharatkul D, Wisitsoraat A, Kerdcharoen T, Wongchoosuk C (2014) Low-cost and flexible printed graphene–PEDOT:PSS gas sensor for ammonia detection. Org Electron 15:2971–2981

    Article  Google Scholar 

  26. Yang W, Zhao Y, He X, Chen Y, Jianhua X, Li S, Yang Y, Jiang Y (2015) Flexible conducting polymer/reduced graphene oxide films: synthesis, characterization, and electrochemical performance. Nanoscale Res Lett 10:222

    Article  Google Scholar 

  27. Patole AS, Patole SP, Jung S-Y, Yoo J-B, An J-H, Kim T-H (2012) Self assembled graphene/carbon nanotube/polystyrene hybrid nanocomposite by in situ microemulsion polymerization. Eur Polym J 48:252–259

    Article  Google Scholar 

  28. Zhao Q, Jamal R, Zhang L, Wang M, Abdiryim T (2014) The structure and properties of PEDOT synthesized by template-free solution method. Nanoscale Res Lett 9:557

    Article  Google Scholar 

  29. Mahanandia P, Nanda KK (2008) A one-step technique to prepare aligned arrays of carbon nanotubes. Nanotechnology 19:155602–155608

    Article  Google Scholar 

  30. Mahanandia P, Vishwakarma PN, Nanda KK, Prasad V, Barai K, Mondal AK, Sarangi S, Dey GK, Subramanyam SV (2008) Synthesis of multi-wall carbon nanotubes by simple pyrolysis. Solid State Commun 145:143–148

    Article  Google Scholar 

  31. Hummers W, Offeman R (1958) Preparation of graphitic oxide. J Am Chem Soc 80:1339

    Article  Google Scholar 

  32. Wang Z, Ba D, Liu F, Cao P, Yang T, Yousong G, Gao H (2005) Synthesis and characterization of large area well-aligned carbon nanotubes by ECR–CVD without substrate bias. Vacuum 77:139–144

    Article  Google Scholar 

  33. Yang W-CM-H, Jong S-B, Lin P-C, Yuan S-S, Chi-Yu L, Chiang P-W, Chung T-W, Tsai W-C, Tyan Y-C (2014) Characterization of silk fibroin modified surface: a proteomic view of cellular response proteins induced by biomaterials. BioMed Res Int 2014:209469

    Google Scholar 

  34. Ionescu R, Espinosa EH, Sotter E, Llobet E, Vilanova X, Correig X, Felten A, Bittencourt C, Van Lier G, Charlier J-C, Pireaux JJ (2006) Oxygen functionalisation of MWNT and their use as gas sensitive thick-film layers. Sens Actuators, B 113:36–46

    Article  Google Scholar 

  35. Li H, Sun M, Zhang T, Fang Y, Wang G (2014) Improving the performance of PEDOT–PSS coated sulfur@activated porous graphene composite cathodes for lithium–sulfur batteries. J Mater Chem A 2:18345–18352

    Article  Google Scholar 

  36. Yoo D, Kim J, Kim JH (2014) Direct synthesis of highly conductive poly(3,4-Ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Res 7(5):717–730

    Article  Google Scholar 

  37. Costa S, Borowiak-Palen E, Kruszyńska M, Bachmatiuk A, Kaleńczuk RJ (2008) Characterization of carbon nanotubes by Raman spectroscopy. Mater Sci Pol 26(2):433–441

    Google Scholar 

  38. Lehman JH, Terrones M, Mansfield E, Hurst KE, Meunier V (2011) Evaluating the characteristics of multiwall carbon Nanotubes. Carbon 49:2581–2602

    Article  Google Scholar 

  39. Wakizaka D, Fushimi T, Ohkita H, Ito S (2004) Hole transport in conducting ultrathin films of PEDOT/PSS prepared by layer-by-layer deposition technique. Polymer 45:8561–8565

    Article  Google Scholar 

  40. Snaith HJ, Kenrick H, Chiesa M, Friend RH (2005) Morphological and electronic consequences of modifications to the polymer anode ‘PEDOT:PSS’. Polymer 46:2573–2578

    Article  Google Scholar 

  41. Yang S-Y, Lin W-N, Huang Y-L, Tien H-W, Wang Jeng-Yu, Ma C-CM, Li S-M, Wang Y-S (2011) Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites. Carbon 49:793–803

    Article  Google Scholar 

  42. Liu M, Johnston MB, Snaith HJ (2013) Efficient planar heterojunction perovskite solar cells by vapour deposition. Nature 501:395–398

    Article  Google Scholar 

  43. Liang P-W, Liao C-Y, Chueh C-C, Spencer FZ, Williams T, Xin X-K, Lin J, Jen AK-Y (2014) Additive enhanced crystallization of solution-processed perovskite for highly efficient planar-heterojunction solar cells. Adv Mater 26:3748–3754

    Article  Google Scholar 

  44. Kojima A, Teshima K, Shirai Y, Miyasaka T (2009) Organometal halide perovskites as visible-light sensitizers for photovoltaic cells. J Am Chem Soc 131:6050–6051

    Article  Google Scholar 

  45. Dubin S, Gilje S, Wang K, Tung VC, Cha K, Hall AS, Farrar J, Varshneya R, Yang Y, Kaner RB, One-Step A (2010) Solvothermal reduction method for producing reduced graphene oxide dispersions in organic solvents. ACS Nano 4:3845–3852

    Article  Google Scholar 

  46. Wu Y, Wang B, Ma Y, Huang Y, Li N, Zhang F, Chen Y (2010) Efficient and large-scale synthesis of few-layered graphene using an arc-discharge method and conductivity studies of the resulting films. Nano Res 3:661–669

    Article  Google Scholar 

  47. Kim J, You J, Kim E (2010) Flexible conductive polymer patterns from vapor polymerizable and photo-cross-linkable EDOT. Macromolecules 43:2322–2327

    Article  Google Scholar 

  48. Si Y, Samulski ET (2008) Synthesis of water soluble graphene. Nano Lett 8(6):1679–1682

    Article  Google Scholar 

  49. Kvarnström C, Neugebauer H, Blomquist S, Ahonen HJ, Kankare J, Ivaska A (1999) In situ spectroelectrochemical characterization of poly(3,4-ethylenedioxythiophene). Electrochim Acta 44:2739–2750

    Article  Google Scholar 

  50. Chen T, Qiu J, Zhu K, Li J, Wang J, Li S, Wang X (2014) Ultra high permittivity and significantly enhanced electric field induced strain in PEDOT:PSS–RGO@PU intelligent shape-changing electro-active polymers. RSC Adv 4:64061–64067

    Article  Google Scholar 

  51. Taggart DK, Yang Y, Kung S-C, McIntire TM, Penner RM (2011) Enhanced thermoelectric metrics in ultra-long electrodeposited PEDOT nanowires. Nano Lett 11(1):125–131

    Article  Google Scholar 

  52. Lee J, Choi W (2015) Surface modification of sulfur cathodes with PEDOT:PSS conducting polymer in lithium-sulfur batteries. J Electrochem Soc 162(6):A935–A939

    Article  Google Scholar 

  53. Wang XJ, Wong KY (2006) Effects of a base coating used for electro-polymerization of poly(3,4-ethylenedioxythiophene) on indium tin oxide electrode. Thin Solid Films 515:1573–1578

    Article  Google Scholar 

  54. Lee Y, Ahn J-H (2013) Graphene-based transparent conductive films. NANO Brief Rep Rev 8(3):1330001

    Google Scholar 

  55. Guan G, Yang Z, Qiu L, Sun X, Zhang Z, Ren J, Peng H (2013) Oriented PEDOT:PSS on aligned carbon nanotubes for efficient dye-sensitized solar cells. J Mater Chem A 1:13268–13273

    Article  Google Scholar 

  56. Kang KS, Lim HK, Cho KY, Han KJ, Kim J (2008) Durability of PEDOT:PSS-pentacene schottky diode. J Phys D Appl Phys 41:012003

    Article  Google Scholar 

  57. Ji T, Tan L, Xiaotian H, Dai Y, Chen Y (2015) A comprehensive study of sulfonated carbon materials as conductive composites for polymer solar cells. Phys Chem Chem Phys 17:4137–4145

    Article  Google Scholar 

Download references

Acknowledgement

This work is financially supported by Science and Engineering Research Board, Government of India through Grant Number SB/S2/CMP-109/2013.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Pitamber Mahanandia.

Ethics declarations

Conflict of interest

We have no conflict of interest with any author or funding agency.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 7836 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mahakul, P.C., Sa, K., Das, B. et al. Preparation and characterization of PEDOT:PSS/reduced graphene oxide–carbon nanotubes hybrid composites for transparent electrode applications. J Mater Sci 52, 5696–5707 (2017). https://doi.org/10.1007/s10853-017-0806-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0806-2

Keywords

Navigation