Skip to main content

Advertisement

Log in

Thermal, structural and in vitro dissolution of antimicrobial copper-doped and slow resorbable iron-doped phosphate glasses

  • In Honor of Larry Hench
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

This paper focuses on investigating and comparing the effects of CuO and Fe2O3 addition on the bioactive response of glass having composition [xCuO or Fe2O3 + (100 − x) (0.2CaO + 0.2SrO + 0.1Na2O + 0.5P2O5)] (in mol%), where x is ranging from 0 up to 5. The addition of CuO was found to increase the hot processing window and the dissolution rate leading to a fast surface layer precipitation. Using IR and Raman spectroscopies, we related this change in the bioactive response of this glass to the progressive depolymerization of the glass network induced by the addition of CuO. On the other hand, the addition of Fe2O3 was found to reduce the hot processing window and the dissolution rate as no depolymerization of the network occurs due to the formation of P–O–Fe bonds at the expense of P–O–P bonds. All the glasses were found to dissolve congruently and in a controlled manner. Finally, the antimicrobial properties of the copper-doped glasses were examined and compared to bioactive glasses which are known to exhibit good antimicrobial properties. The CuO addition leads to higher antimicrobial properties than the commercial bioactive glass S53P4 and total bacterial elimination could be obtained.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater Res 2(1):117–141

    Article  Google Scholar 

  2. Fagerlund S, Massera J, Hupa L, Hupa M (2012) T–T–T behaviour of bioactive glasses 1–98 and 13–93. J Eur Ceram Soc 32(11):2731–2738

    Article  Google Scholar 

  3. Massera J, Hupa L, Hupa M (2012) Influence of partial substitution of CaO with MgO on the thermal properties and in vitro reactivity of the bioactive glass S53P4. J Non Cryst Solids 358(18–19):2701–2707

    Article  Google Scholar 

  4. Lindfors NC, Koski I, Heikkila JT, Mattila K, Aho AJ (2010) A prospective randomized 14-year follow-up study of bioactive glass and autogenous bone as bone graft substitutes in benign bone tumors. J Biomed Mater Res B Appl Biomater 94B:157–164

    Google Scholar 

  5. Bunker BC, Arnold GW, Wilder JA (1984) Phosphate glass dissolution in aqueous solutions. J Non Cryst Solids 64(3):291–316

    Article  Google Scholar 

  6. Brow RK (2000) Review: the structure of simple phosphate glasses. J Non Cryst Solids 263&264:1–28

    Article  Google Scholar 

  7. Vogel W (1994) Glass chemistry, 2nd edn. Springer, Berlin

    Book  Google Scholar 

  8. Massera J, Mayran M, Rocherullé J, Hupa L (2015) Crystallization behavior of phosphate glasses and its impact on the glasses’ bioactivity. J Mater Sci 50(8):3091–3102. doi:10.1007/s10853-015-8869-4

    Article  Google Scholar 

  9. Massera J, Kokkari A, Narhi T, Hupa L (2015) The influence of SrO and CaO in silicate and phosphate bioactive glasses on human gingival fibroblasts. J Mater Sci Mater Med 26(6):1. doi:10.1007/s10856-015-5528-x

    Article  Google Scholar 

  10. Morohashi T, Sano T, Yamada S (1994) Effects of strontium on calcium metabolism in rats. I. A distinction between the pharmacological and toxic doses. Jpn J Pharmacol 64(3):155–162

    Article  Google Scholar 

  11. Bartley JC, Reber EF (1961) Toxic effects of stable strontium in young pigs. J Nutr 75:21–28

    Google Scholar 

  12. Jones J (1938) The metabolism of calcium and phosphorus as influenced by the addition to the diet of salts of metals which form insoluble phosphates. Am J Physiol 124:230–237

    Google Scholar 

  13. Shelby JE (1997) Introduction to glass science and technology. Royal Society of Chemistry, London

    Google Scholar 

  14. Elliot SR (1984) Physics of amorphous materials. Longman, Newyork

    Google Scholar 

  15. Wu C, Zhou Y, Xu M, Han P, Chen L, Chang J, Xiao Y (2013) Copper-containing mesoporous bioactive glass scaffolds with multifunctional properties of angiogenesis capacity, osteostimulation and antibacterial activity. Biomaterials 34(2):422–433

    Article  Google Scholar 

  16. Mulligan AM, Wilson M, Knowles JC (2003) The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis. Biomaterials 24:1797–1807

    Article  Google Scholar 

  17. Abou Neel EA, Ahmed I, Pratten J, Nazhat SN, Knowles JC (2005) Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26:2247–2254

    Article  Google Scholar 

  18. Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25(16):3223–3232

    Article  Google Scholar 

  19. Simon V, Chiuzbăian SG, Neumann M, Eniu D, Indrea E, Török-Kiss A, Simon S (2000) Photoelectron spectroscopy on iron-containing CaO–SiO2–P2O5 glass ceramics. Mod Phys Lett B 14(21):767–772

    Article  Google Scholar 

  20. Mulligan AM, Wilson M, Knowles JC (2003) Effect of increasing silver content in phosphate-based glasses on biofilms of Streptococcus sanguis. J Biomed Mater Res 67A:401–412

    Article  Google Scholar 

  21. Ahmed I, Ready D, Wilson M, Knowles JC (2006) Antimicrobial effect of silver-doped phosphate-based glasses. J Biomed Mater Res 79(3):618–626

    Article  Google Scholar 

  22. Avent AG, Carpenter CN, Smith JD, Healy DM, Gilchrist T (2003) The dissolution of silver–sodium–calcium–phosphate glasses for the control of urinary tract infections. J Non Cryst Solids 328:31–39

    Article  Google Scholar 

  23. Zhang D, Lepparanta O, Munukka E, Ylanen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Antibacterial effects and dissolution behavior of six bioactive glasses. J Biomed Mater Res A 93(2):475–483

    Google Scholar 

  24. Lepparanta O, Vaahtio M, Peltola T, Zhang D, Hupa L, Hupa M, Ylanen H, Salonen JI, Viljanen MK, Eerola E (2008) Antibacterial effect of bioactive glasses on clinically important anaerobic bacteria in vitro. J Mater Sci Mater Med 19(2):547–551. doi:10.1007/s10856-007-3018-5

    Article  Google Scholar 

  25. Lysenko O, Dubok O, Borysenko A, Shinkaruk O (2015) The biological properties of the silver- and copper-doped ceramic biomaterial. J Nanopart Res 17:178

    Article  Google Scholar 

  26. Coraca-Huber DC, Fille M, Hausdorfer J, Putzer D, Nogler M (2014) Efficacy of antibacterial bioactive glass S53P4 against S. aureus biofilms grown on titanium discs in vitro. J Orthop Res 32:175–177

    Article  Google Scholar 

  27. Mishra A, Rocherullé J, Massera J (2016) Ag-doped phosphate bioactive glasses: thermal, structural and in vitro dissolution properties. Biomed Glasses 2:38–48

    Article  Google Scholar 

  28. Hupa L, Fagerlund S, Massera J, Björkvik L (2016) Dissolution behavior of the bioactive glass S53P4 when sodium is replaced by potassium, and calcium with magnesium or strontium. J Non Cryst Solids 432A:41–46

    Article  Google Scholar 

  29. Bae BS, Weinberg MC (1994) Optical absorption of copper phosphate glasses in the visible spectrum. J Non Cryst Solids 168:223–231

    Article  Google Scholar 

  30. Shih PY, Shiu HM (2007) Properties and structural investigations of UV-transmitting vitreous strontium zinc metaphosphate. Mater Chem Phys 106(2-3):222–226

    Article  Google Scholar 

  31. Gao H, Tan T, Wang D (2004) Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium. J Controll Release 96:21–28

    Article  Google Scholar 

  32. Moustafa YM, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non Cryst Solids 240:144–153

    Article  Google Scholar 

  33. Abou Neel EA, Chrzanowski W, Pickup DM, O’Deel LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface 6:435–446

    Article  Google Scholar 

  34. Ilieva D, Jivov B, Bogachev G, Petkov C, Penkov I, Dimitriev Y (2001) Infrared and Raman spectra of Ga2O5–P2O5 glasses. J Non Cryst Solids 283:195–202

    Article  Google Scholar 

  35. Lee S, Obata A, Kasuga T (2009) Ion release from SrO–CaO–TiO2–P2O5 glasses in Tris buffer solution. J Ceram Soc Jpn 117:935–938

    Article  Google Scholar 

  36. Karakassides MA, Saranti A, Koutselas I (2004) Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J Non Cryst Solids 347:69–79

    Article  Google Scholar 

  37. Kalampounias AG (2012) Short-time vibrational dynamics of metaphosphate glasses. J Phys Chem Solids 73(2):148–153

    Google Scholar 

  38. Lucacel RC, Hulpus AO, Simon V, Ardelean I (2009) Structural characterization of phosphate glasses doped with silver. J Non Cryst Solids 355(7):425–429

    Article  Google Scholar 

  39. Massera J, Vassallo-Breillot M, Törngren B, Glorieux B, Hupa L (2014) Effect of CeO2 doping on thermal, optical, structural and in vitro properties of a phosphate based bioactive glass. J Non Cryst Solids 402:28–35

    Article  Google Scholar 

  40. Metwalli E, Karabulut M, Sidebottom DL, Morsi MM, Brow RK (2004) Properties and structure of copper ultraphosphate glasses. J Non Cryst Solids 344:128–134

    Article  Google Scholar 

  41. Moustafa YM, El-Egili K, Doweidar H, Abbas I (2004) Structure and electric conduction of Fe2O3–P2O5 glasses. Phys B 353:82–91

    Article  Google Scholar 

  42. Mehdikhani B, Borhani GH (2013) Optical spectroscopy of sodium silicate glasses prepared with nano- and micro-sized iron oxide particles. Process Appl Ceram 7(3):117–221

    Article  Google Scholar 

  43. Massera J, Petit L, Cardinal T, Videau J, Hupa L, Hupa M (2013) Thermal properties and surface reactivity in simulated body fluid of new strontium ion-containing phosphate glasses. J Mater Sci Mater Med 24:1407–1416. doi:10.1007/s10856-013-4910-9

    Article  Google Scholar 

  44. Munukka E, Leppäranta O, Korkeamäki M, Vaahtio M, Peltola T, Zhang D, Hupa L, Ylänen H, Salonen JI, Viljanen MK, Eerola E (2008) Bactericidal effects of bioactive glasses on clinically important aerobic bacteria. J Mater Sci Mater Med 19(1):27–32. doi:10.1007/s10856-007-3143-1

    Article  Google Scholar 

  45. Zhang D, Lapperanta O, Munukka E, Ylänen H, Viljanen MK, Eerola E, Hupa M, Hupa L (2010) Thermal stability of glasses from the Fe4(P2O7)3–Fe(PO3)3 system. J Non Cryst Solids 356:2965–2968

    Article  Google Scholar 

  46. Cao B, Zheng Y, Xi T, Zhang C, Song W, Burugapalli K, Yang H, Ma Y (2012) Concentration-dependent cytotoxicity of copper ions on mouse fibroblasts in vitro: effects of copper ion release from TCu380A vs TCu220C intra-uterine devices. Biomed Microdevices 14(4):709–720

    Article  Google Scholar 

  47. Poon VKM, Burd A (2004) In vitro cytotoxity of silver: implication for clinical wound care. Burns 30(2):140–147

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the support of Academy of Finland for the financial support of Dr. Jonathan Massera through the Academy Research Fellow and Initial Research Cost and for the support of Dr. Laeticia Petit through “COMPETITIVE FUNDING TO STRENGTHEN UNIVERSITY RESEARCH PROFILES funded by Academy of Finland, decision number 310359.” Dr. Maria Pihl and Prof. Martin Andersson acknowledge funding from the Knut and Alice Wallenberg foundation through their Wallenberg Academy Fellows program. Funding was provided by Suomen Akatemia (FI), Academy of Finland (Grant No. 275427, 284492 and 310359), Knut and Alice Wallenburg Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Massera.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mishra, A., Petit, L., Pihl, M. et al. Thermal, structural and in vitro dissolution of antimicrobial copper-doped and slow resorbable iron-doped phosphate glasses. J Mater Sci 52, 8957–8972 (2017). https://doi.org/10.1007/s10853-017-0805-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0805-3

Keywords

Navigation