Skip to main content
Log in

Phase- and size-controllable synthesis with efficient photocatalytic activity of ZnS nanoparticles

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We report a simple solution-based method to synthesize phase- and size-controllable ZnS nanoparticles at low temperature. Cubic ZnS (c-ZnS) and hexagonal ZnS nanoparticles (h-ZnS) were obtained by heating an aqueous solution of Zn(NO3)2·6H2O and Na2S2O3·5H2O at different temperatures. When the system was heated at 65 °C for 24 h, hexagonal crystal structure of ZnS nanoparticles, with size of 50–350 nm, was obtained, as confirmed by X-ray diffraction and selected-area electron diffraction. When the reaction temperature was 100 °C under hydrothermal condition, c-ZnS nanoparticles were obtained and exhibited monodisperse nanoparticles with average size of 4 nm. Proper rate of S releasing tuned by the variation of pH value is believed to be critical to stabilize the hexagonal ZnS nanoparticles. Compared with large size of h-ZnS nanoparticles, c-ZnS nanoparticles show higher photocatalytic activity in degrading methyl orange (MO). The degradation efficiency of c-ZnS nanoparticles reaches 97% under UV irradiation for 120 min. The good ultraviolet absorbing ability, charge separation property, and large surface area of c-ZnS nanoparticles are believed to have a positive impact on improving the degradation rate and degradation efficiency of MO.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sun X, Huang X, Guo J, Zhu W, Ding Y, Niu G, Chen X (2014) Self-illuminating 64Cu-doped CdSe/ZnS nanocrystals for in vivo tumor imaging. J Am Chem Soc 136:1706–1709

    Article  Google Scholar 

  2. Prakasam BA, Lahtinen M, Peuronen A, Muruganandham M, Kolehmainen E, Haapaniemi E, Sillanpää M (2015) Phase selective synthesis of ZnS nanoparticles from structurally new dithiocarbamate precursor. Mater Lett 144:19–21

    Article  Google Scholar 

  3. Wang Z, Daemen LL, Zhao Y, Zha CS, Downs RT, Wang X, Hemley RJ (2005) Morphology-tuned wurtzite-type ZnS nanobelts. Nat Mater 4:922–927

    Article  Google Scholar 

  4. Zhang X, Yang S, Sun LQ, Luo AQ (2016) Surface-imprinted polymer coating l-cysteine-capped ZnS quantum dots for target protein specific recognition. J Mater Sci 51:6075–6085. doi:10.1007/s10853-016-9914-7

    Article  Google Scholar 

  5. Kozák O, Praus P, Kočí K, Klementová M (2010) Preparation and characterization of ZnS nanoparticles deposited on montmorillonite. J Colloid Interface Sci 352:244–251

    Article  Google Scholar 

  6. Gilbert B, Frazer BH, Zhang H, Huang F, Banfield JF, Haskel D, De Stasio G (2002) X-ray absorption spectroscopy of the cubic and hexagonal polytypes of zinc sulfide. Phys Rev B 66:2452053915

    Article  Google Scholar 

  7. Fran K, Yun HN, Yiming T, Rose A, Nagarajan V, Judy NH (2016) ZnS thin films for visible-light active photoelectrodes: effect of film morphology and crystal structure. Cryst Growth Des 16:2461–2465

    Article  Google Scholar 

  8. Fang Z, Wen S, Ye X, Feng W, Zheng Z, Lu M, Lin S, Fu X, Liu P (2015) Defect engineering and phase junction architecture of wide-bandgap ZnS for conflicting visible light activity in photocatalytic H2 evolution. ACS Appl Mater Interfaces 7:13915–13924

    Article  Google Scholar 

  9. Geng BY, Liu XW, Du Q, Wei XW, Zhang LD (2006) Structure and optical properties of periodically twinned ZnS nanowires. Appl Phys Lett 88:163104

    Article  Google Scholar 

  10. Tong H, Zhu YJ, Yang LX, Li L, Zhang L, Chang J, Wang SW (2007) Self-assembled ZnS nanostructured spheres: controllable crystal phase and morphology. J Phys Chem C 111:3893–3900

    Article  Google Scholar 

  11. Zhao Y, Zhang Y, Zhu H, Hadjipanayis GC, Xiao JQ (2004) Low-temperature synthesis of hexagonal (wurtzite) ZnS nanocrystals. J Am Chem Soc 126:6874–6875

    Article  Google Scholar 

  12. Dong M, Zhang J, Yu JG (2015) Effect of effective mass and spontaneous polarization on photocatalytic activity of wurtzite and zinc-blende ZnS. Appl Mater 3:1–8

    Google Scholar 

  13. Meng X, Xiao H, Wen X, Goddard WA III, Li S, Qin G (2013) Dependence on the structure and surface polarity of ZnS photocatalytic activities of water splitting: first-principles calculations. Phys Chem Chem Phys 15:9531–9539

    Article  Google Scholar 

  14. Hong Y, Zhang J, Wang X, Wang Y, Lin Z, Yu J, Huang F (2012) Influence of lattice integrity and phase composition on the photocatalytic hydrogen production efficiency of ZnS nanomaterials. Nanoscale 4:2859–2862

    Article  Google Scholar 

  15. Chen F, Cao Y, Jia D (2015) Facile synthesis of ZnS nanoparticles and their excellent photocatalytic performance. Ceram Int 41:6645–6652

    Article  Google Scholar 

  16. Yin L, Wang D, Huang J, Cao L, Ouyang H, Yong X (2015) Morphology-controllable synthesis and enhanced photocatalytic activity of ZnS nanoparticles. J Alloys Compd 664:476–480

    Article  Google Scholar 

  17. Ibupoto ZH, Khun K, Liu X, Willander M (2013) Hydrothermal synthesis of nanoclusters of ZnS comprised on nanowires. Nanomaterials 3:564–571

    Article  Google Scholar 

  18. Yin L, Zhang D, Wang D, Kong X, Huang J, Wang F, Wu Y (2016) Size dependent photocatalytic activity of ZnS nanostructures prepared by a facile precipitation method. Mater Sci Eng, B 208:15–21

    Article  Google Scholar 

  19. Smith AM, Nie SM (2010) Semiconductor nanocrystals: structure, properties, and band gap engineering. Acc Chem Res 43:190–200

    Article  Google Scholar 

  20. Ding Y, Wang XD, Wang ZL (2004) Phase controlled synthesis of ZnS nanobelts: zinc blende vs wurtzite. Chem Phys Lett 398:32–36

    Article  Google Scholar 

  21. Liu W (2006) Low temperature synthesis of hexagonal phase ZnS nanocrystals by thermolysis of an air-stable single-source molecular precursor in air. Mater Lett 60:551–554

    Article  Google Scholar 

  22. Yu SH, Yoshimura M (2002) Shape and phase control of ZnS nanocrystals: template fabrication of wurtzite ZnS single-crystal nanosheets and ZnO flake-like dendrites from a lamellar molecular precursor ZnS·(NH2CH2CH2NH2)0.5. Adv Mater 14:296–300

    Article  Google Scholar 

  23. Huang F, Banfield JF (2005) Size-dependent phase transformation kinetics in nanocrystalline ZnS. J Am Chem Soc 127:4523–4529

    Article  Google Scholar 

  24. Yang F, Xi J, Gan LY, Wang Y, Lu S, Ma W, Zhao Y (2016) Improved charge transfer and photoelectrochemical performance of CuI/Sb2S3/TiO2 heterostructure nanotube arrays. J Colloid Interface Sci 464:1–9

    Article  Google Scholar 

  25. Jia Y, Yang F, Cai F, Cheng C, Zhao Y (2013) Photoelectrochemical and charge transfer properties of SnS/TiO2 heterostructure nanotube arrays. Electron Mater Lett 9:287–291

    Article  Google Scholar 

  26. Cai FG, Yang F, Jia YF, Ke C, Cheng CH, Zhao Y (2013) Bi2S3-modified TiO2 nanotube arrays: easy fabrication of heterostructure and effective enhancement of photoelectrochemical property. J Mater Sci 48:6001–6007. doi:10.1007/s10853-013-7396-4

    Article  Google Scholar 

  27. Cai FG, Yang F, Zhang Y, Ke C, Cheng C, Zhao Y, Yan G (2014) PbS sensitized TiO2 nanotube arrays with different sizes and filling degrees for enhancing photoelectrochemical properties. Phys Chem Chem Phys 16:23967–23974

    Article  Google Scholar 

  28. Chai L, Du J, Xiong S, Li H, Zhu Y, Qian Y (2007) Synthesis of wurtzite ZnS nanowire bundles using a solvothermal technique. J Phys Chem C 111:12658–12662

    Article  Google Scholar 

  29. Wang GZ, Geng BY, Huang XM, Wang YW, Li GH, Zhang LD (2003) A convenient ultrasonic irradiation technique for in situ synthesis of zinc sulfide nanocrystallites at room temperature. Appl Phys A 77:933–936

    Article  Google Scholar 

  30. Tarasov K, Houssein D, Destarac M, Marcotte N, Gérardin C, Tichit D (2013) Stable aqueous colloids of ZnS quantum dots prepared using double hydrophilic block copolymers. New J Chem 37:508–514

    Article  Google Scholar 

  31. Lin YH, Wang DJ, Zhao QD, Yang M, Zhang QL (2004) A study of quantum confinement properties of photogenerated charges in ZnO nanoparticles by surface photovoltage spectroscopy. J Phys Chem B 108:3202–3206

    Article  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Major Project of Education Department in Sichan Province (15ZA0286), Startup Fund for Distinguished Scholars of Neijiang Normal University (14B03), Key Lab of Process Analysis and Control of Sichuan Universities (Major Project, 2015002) and Major Project of Science & Technology Department in Sichan Province (2016JY0168), New Teachers’ Fund for Doctor Stations, Ministry of Education (20120184120024) and National Magnetic Confinement Fusion Science Programme (2011GB112001).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Feng Yang or Yuan Pu.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huo, F., Wang, Y., You, C. et al. Phase- and size-controllable synthesis with efficient photocatalytic activity of ZnS nanoparticles. J Mater Sci 52, 5626–5633 (2017). https://doi.org/10.1007/s10853-017-0797-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0797-z

Keywords

Navigation