Skip to main content
Log in

The influence of N and Bi on the band gap and sub-band interactions in a proposed material GaSb1−xy N y Bi x /GaSb: a theoretical approach

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The quaternary GaSb1−xy N y Bi x , epitaxially grown over GaSb substrates, is proposed as a suitable material for optoelectronic devices in the mid-infrared region. Conduction band anti-crossing and valence band anti-crossing models are used to calculate the conduction band and valence band split-off energies and strain in the material as functions of Bi and N contents. Material compositions and band gap are calculated for various strain conditions, such as unstrained, tensile strain and compressive strain. Ratio of nitrogen concentration to Bi concentration for perfect lattice match with GaSb substrate is calculated as 0.14.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

Explore related subjects

Discover the latest articles and news from researchers in related subjects, suggested using machine learning.

References

  1. Zhang Y, Mascarenhas A (2005) Similar and dissimilar aspects of III–V semiconductors containing Bi versus N. Phys Rev B 71:155201

    Article  Google Scholar 

  2. Shan W, Walkiewicz W, Ager JW (1999) Band anti-crossing in GaInNAs alloys. Phys Rev 82(6):1221–1224

    Google Scholar 

  3. Sweeney SJ, Jin SR (2013) Bismide-nitride alloys: promising for efficient light emitting devices in the near- and mid-infrared. J Appl Phys 113:043110

    Article  Google Scholar 

  4. Fluegel B, Francoeur S, Mascarenhas A, Tixier S, Young EC, Tiedje T (2006) Giant spin–orbit bowing in GaAs1−xBix. Phys Rev Lett 97:067205

    Article  Google Scholar 

  5. Grenouillet L (2001) PhD Lyon University

  6. Nacer S, Aissat A, Ferdjani K (2008) Band gap and band offsets of GaNAsBi lattice matched to GaAs substrate. Opt Quantum Electron 40:677–683

    Article  Google Scholar 

  7. Walukiewicz W, AgerIII JW, Haller EE, Geisz JF, Friedman DJ, Olson JM, Kurtz Sarah R (1999) Effect of nitrogen on the band structure of GaInNAs alloys. J Appl Phys 86:2349

    Article  Google Scholar 

  8. Alberi K, Wu J, Walukiewicz W, Yu KM, Dubon OD, Watkins SP et al (2007) Valence-band anticrossing in mismatched III–V semiconductor alloys. Phys Rev B 75:045203. doi:10.1103/PhysRevB.75.045203

    Article  Google Scholar 

  9. Mondal A, Das TD, Haldar N, Dhar S (2006) Growth of dilute GaSbN layers by liquid-phase epitaxy. J Cryst Growth 297:4–6

    Article  Google Scholar 

  10. Wang D, Svensson SP et al (2009) Band edge optical transition in dilute-nitride GaNSb. J Appl Phys 105:014904

    Article  Google Scholar 

  11. Das SK, Das TD, Dhar S, De La Mare M, Krier A (2012) Near infrared photoluminescence observed in dilute GaSbBi alloys grown by liquid phase epitaxy. Infrared Phys Technol 55:156–160

    Article  Google Scholar 

  12. Rajpalke MK, Linhart WM et al (2013) Growth and application of GaSbBi alloys. Appl Phys Lett 103:142106

    Article  Google Scholar 

  13. Habchi MM, BenNasr A, Rebey A, ElJani B (2013) Electronic band structure calculation of GaNAsBi alloys and effective mass study. Infrared Phys Technol 61:88–93

    Article  Google Scholar 

  14. Vurgaftman I, Meyer JR, Ram-Mohan LR (2001) Band parameters for III–V compound semiconductors and their alloys. J Appl Phys 89:5815

    Article  Google Scholar 

  15. Jefferson PH, Veal TD et al (2006) Band anticrossing in GaNxSb1−x. Appl Phys Lett 89:111921

    Article  Google Scholar 

  16. Samajdar DP, Das TD, Dhar S (2015) Valence band anti-crossing model for GaSb1−xBix and GaP1−xBix using k.p method. Mater Sci Semicond Process 40:539–542

    Article  Google Scholar 

  17. Cuminal Y (1997) (PhD) Réalisation et etude de diodes lasers à base de GaSb émettant vers 2.3 µm pour application à l’analyse de gaz, Montpellier II University, France

  18. Usman M, Broderick CA, Lindsay A, O’Reilly EP (2011) Tight-binding analysis of the electronic structure of dilute bismide alloys of GaP and GaAs. Phys Rev B 84:245202

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Utsa Das.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Das, U., Dhar, S. The influence of N and Bi on the band gap and sub-band interactions in a proposed material GaSb1−xy N y Bi x /GaSb: a theoretical approach. J Mater Sci 52, 5611–5616 (2017). https://doi.org/10.1007/s10853-017-0795-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0795-1

Keywords