Skip to main content

Advertisement

Log in

In situ nanomechanical behaviour of coexisting insulating and metallic domains in VO2 microbeams

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Measuring the electrical and mechanical responses of coexisting phases at nanoscale provides a platform to engineer micro-/nanoscale pattern of metallic and insulating domains with control over properties to make novel devices. Here, we employ several in situ characterization techniques, namely Raman, optical imaging and electrical measurements, to identify the phase coexistence of metallic and insulating domains. Further, we performed site-specific in situ nanoindentation to address the spatial variation in nanomechanical properties in vanadium dioxide (VO2) single-crystal microbeams in proximity to metal–insulator transition temperature. We also investigated load or contact depth dependence on elastic modulus at various temperatures to avoid the interference of indentation size effect on nanomechanical properties across the phase transition. The obtained results confirm the abrupt increase in elastic modulus (~17 GPa) and nanohardness (1 GPa) across the transition from monoclinic (insulator) to rutile (metal) phase.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Hu B, Ding Y, Chen W et al (2010) External-strain induced insulating phase transition in VO2 nanobeam and its application as flexible strain sensor. Adv Mater 22:5134–5139

    Article  Google Scholar 

  2. Parikh P, Chakraborty C, Abhilash TS et al (2013) Dynamically Tracking the strain across the metal–insulator transition in VO2 measured using electromechanical resonators. Nano Lett 13:4685–4689

    Article  Google Scholar 

  3. Rúa A, Cabrera R, Coy H et al (2012) Phase transition behavior in microcantilevers coated with M1-phase VO2 and M2-phase VO2: Cr thin films. J Appl Phys 111:104502-1–104502-10. doi:10.1063/1.4716191

    Article  Google Scholar 

  4. Viswanath B, Ramanathan S (2013) Direct in situ observation of structural transition driven actuation in VO2 utilizing electron transparent cantilevers. Nanoscale 5:7484–7492

    Article  Google Scholar 

  5. Guo H, Wang K, Deng Y et al (2013) Nanomechanical actuation from phase transitions in individual VO2 micro-beams. Appl Phys Lett 102:1–5

    Google Scholar 

  6. Liu K, Cheng C, Cheng Z et al (2012) Giant-amplitude, high-work density microactuators with phase transition activated nanolayer bimorphs. Nano Lett 12:6302–6308

    Article  Google Scholar 

  7. Ahn KH, Lookman T, Bishop AR (2004) Strain-induced metal–insulator phase coexistence in perovskite manganites. Nature 428:401–404. doi:10.1038/nature02411.1

    Article  Google Scholar 

  8. Guo H, Khan MI, Cheng C et al (2014) Vanadium dioxide nanowire-based microthermometer for quantitative evaluation of electron beam heating. Nat Commun 5:4986-1–4986-4

    Google Scholar 

  9. Chudnovskii FA, Odynets LL, Pergament AL, Stefanovich GBS (1996) Electroforming and switching in oxides of transition metals: the role of metal–insulator transition in the switching mechanism. J Solid State Chem 122:95–99

    Article  Google Scholar 

  10. Zhou Y, Ramanathan S (2015) Mott memory and neuromorphic devices. Proc IEEE 103:1289–1310

    Article  Google Scholar 

  11. Field M, Hillman C, Stupar P et al (2015) Vanadium dioxide phase change switches. Proc SPIE 9479:947908-1–947908-8

    Google Scholar 

  12. Zhou J, Gao Y, Zhang Z et al (2013) VO2 thermochromic smart window for energy savings and generation. Sci Rep 3:3029-1–3029-5

    Google Scholar 

  13. Merced E, Tan X, Sepúlveda N (2013) Strain energy density of VO2-based microactuators. Sens Actuators A Phys 196:30–37

    Article  Google Scholar 

  14. Tselev A, Budai JD, Strelcov E et al (2011) Electromechanical actuation and current-induced metastable states in suspended single-crystalline VO2 nanoplatelets. Nano Lett 11:3065–3073

    Article  Google Scholar 

  15. Wang K, Cheng C, Cardona E et al (2013) Performance limits of microactuation with vanadium dioxide as a solid engine. ACS Nano 7:2266–2272

    Article  Google Scholar 

  16. Merced E, Zhang J, Tan X et al (2014) Robust control of VO2-coated micro-benders using self-sensing feedback. IEEE 19:1–10

    Google Scholar 

  17. Gu Y, Cao J, Wu J, Chen LQ (2010) Thermodynamics of strained vanadium dioxide single crystals. J Appl Phys 108:1–7. doi:10.1063/1.3499349

    Google Scholar 

  18. Atkin JM, Berweger S, Chavez EK et al (2012) Strain and temperature dependence of the insulating phases of VO2 near the metal–insulator transition. Phys Rev B Condens Matter Mater Phys 85:1–4

    Article  Google Scholar 

  19. Mun BS, Chen K, Yoon J et al (2011) Nonpercolative metal–insulator transition in VO2 single crystals. Phys Rev B Condens Matter Mater Phys 84:3–6

    Article  Google Scholar 

  20. Tselev A, Luk’Yanchuk IA, Ivanov IN et al (2010) Symmetry relationship and strain-induced transitions between insulating M1 and M2 and metallic R phases of vanadium dioxide. Nano Lett 10:4409–4416

    Article  Google Scholar 

  21. Park JH, Coy JM, Kasirga TS et al (2013) Measurement of a solid-state triple point at the metal–insulator transition in VO2. Nature 500:431–434

    Article  Google Scholar 

  22. Cao J, Ertekin E, Srinivasan V et al (2009) Strain engineering and one-dimensional organization of metal–insulator domains in single-crystal vanadium dioxide beams. Nat Nanotechnol 4:732–737

    Article  Google Scholar 

  23. Baum P, Yang D-S, Zewail AH (2007) 4D visualization of transitional structures in phase transformations by electron diffraction. Science 318:788–792

    Article  Google Scholar 

  24. Cavalleri A, Tóth C, Siders CW et al (2001) Femtosecond Structural dynamics in VO2 during an ultrafast solid-solid phase transition. Phys Rev Lett 87:237401-1–237401-4

    Article  Google Scholar 

  25. Viswanath B, Shastry VV, Ramamurty U, Ravishankar N (2010) Effect of calcium deficiency on the mechanical properties of hydroxyapatite crystals. Acta Mater 58:4841–4848

    Article  Google Scholar 

  26. Schuh CA (2006) Nanoindentation studies of materials. Mater Today 9:32–40

    Article  Google Scholar 

  27. Mun BS, Chen K, Leem Y et al (2015) Observation of insulating-insulating monoclinic structural transition in macro-sized VO2 single crystals. Phys Status Solidi Rapid Res Lett 9:107–109

    Article  Google Scholar 

  28. Tao Z, Han T-R, Mahanti S et al (2012) Decoupling of structural and electronic phase transitions in VO2. Phys Rev Lett 109:166406-1–166406-5

    Google Scholar 

  29. Jones AC, Berweger S, Wei J et al (2010) Nano-optical investigations of the metal–insulator phase behavior of individual VO2 microcrystals. Nano Lett 10:1574–1581

    Article  Google Scholar 

  30. Strelcov E, Ievlev A, Belianinov A et al (2016) Local coexistence of VO2 phases revealed by deep data analysis. Sci Rep 6:29216-1–29216-6

    Article  Google Scholar 

  31. Madan H, Jerry M, Pogrebnyakov A et al (2015) Quantitative mapping of phase coexistence in Mott-Peierls insulator during electronic and thermally driven phase transition. ACS Nano 9:2009–2017

    Article  Google Scholar 

  32. Oliver C, Pharr M (1992) An improved technique for determining hardness and elastic modulus using load and displacement sensing indentation experiments. J Mater Res 7:1564–1583

    Article  Google Scholar 

  33. Kucharczyk D, Niklewski T (1979) Accurate X-ray determination of the lattice parameters and the thermal expansion coefficients of VO2 near the transition temperature. J Appl Crystallogr 12:370–373

    Article  Google Scholar 

  34. Marezio M, McWhan DB, Remeika JP, Dernier PD (1972) Structural aspects of the metal–insulator transitions in Cr-doped VO2. Phys Rev B 5:2541–2551

    Article  Google Scholar 

  35. Hazen RM, Prewitt CT (1977) Effects of temperature and pressure on interatomic distances in oxygen-based minerals. Am Miner 62:309–315

    Google Scholar 

  36. Brown ID, Shannon RD (1973) Empirical bond-strength bond-length curves for oxides. Acta Crystallogr Sect A 29:266–282

    Article  Google Scholar 

  37. Lukyanov SI, Bandura AV, Evarestov RA (2015) Temperature dependence of Young’s modulus of titanium dioxide (TiO2) nanotubes: molecular mechanics modeling. Phys Solid State 57:2464–2472

    Article  Google Scholar 

  38. Dong H, Liu H (2013) Elastic properties of VO2 from first-principles calculation. Solid State Commun 167:1–4

    Article  Google Scholar 

  39. Tsai KY, Chin TS, Shieh HPD (2004) Effect of grain curvature on nano-indentation measurements of thin films. Jpn J Appl Phys, Part 1 Regul Pap Short Notes Review Paper 43:6268–6273

  40. Jin P, Nakao S, Tanemura S et al (1999) Characterization of mechanical properties of VO2 thin films on sapphire and silicon by ultra-microindentation. Thin Solid Films 343:134–137

    Article  Google Scholar 

  41. Sepúlveda N, Rúa A, Cabrera R, Fernández F (2008) Young’s modulus of VO2 thin films as a function of temperature including insulator-to-metal transition regime. Appl Phys Lett 92:1–4

    Article  Google Scholar 

  42. Sedlmayr A, Mönig R, Boles ST et al (2012) Strain-induced phase transformation and piezoresistivity in VO2 nanowires. MRS Commun 2:41–45

    Article  Google Scholar 

  43. Guo H, Chen K, Oh Y et al (2011) Mechanics and dynamics of the strain-induced M1-M2 structural phase transition in individual VO2 nanowires. Nano Lett 11:3207–3213

    Article  Google Scholar 

  44. Holsteen A, Kim IS, Lauhon LJ (2014) Extraordinary dynamic mechanical response of vanadium dioxide nanowires around the insulator to metal phase transition. Nano Lett 14:1898–1902

    Article  Google Scholar 

  45. Pharr GM, Herbert EG, Gao Y (2010) The indentation size effect: a critical examination of experimental observations and mechanistic interpretations. Annu Rev Mater Res 40:271–292

    Article  Google Scholar 

Download references

Acknowledgements

We acknowledge generous institute grant for establishing in situ nanoindentation facility. We thank Advanced Materials Research Centre (AMRC) at IIT Mandi for Raman spectroscopy and other characterization facilities. We also express our gratitude towards Pawan Kumar and Piyush Avasthi for their instrumental help in material characterization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Viswanath.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (MP4 2079 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, D., Viswanath, B. In situ nanomechanical behaviour of coexisting insulating and metallic domains in VO2 microbeams. J Mater Sci 52, 5589–5599 (2017). https://doi.org/10.1007/s10853-017-0792-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0792-4

Keywords

Navigation