Skip to main content

Advertisement

Log in

Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review

  • In Honor of Larry Hench
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

For the last few decades, there has been a growing interest in using glasses for biomedical applications. Bioactive glasses are a group of surface reactive glasses which can initiate a range of biological responses by releasing ions into the local environment. Silicate, borate and phosphate glasses are known to show good bioactive characteristics and could be potentially used as favourable templates for bone-tissue formation. Phosphate glasses are unique group of materials that offer great potential for hard and soft tissue engineering over other types of bioactive glasses due to their fully resorbable characteristics, with some formulations possessing chemical composition similar to the mineral phase of natural bone. Moreover, these phosphate glasses can be prepared as fibres which could be used for soft tissue engineering and as fibrous reinforcement for resorbable polymers such as poly-(lactic acid) for fracture fixation applications. This review details some of the properties of phosphate glasses, such as thermal, viscosity/temperature, dissolution and biocompatibility of and how different factors can effectively alter these properties. The effect of the addition of different modifier oxides on the structure in terms of chain length is included. This review also reports on the manufacturing process, mechanical properties and biomedical application of phosphate glass fibres. A brief comparison between three different types of bioactive glasses has also been presented in this review. The main aim of this review is to present the factors affecting the properties of phosphate glasses and glass fibres and how these may be exploited in the design of a biomaterial.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Williams DF (1999) The Williams dictionary of biomaterials. Liverpool University Press, Liverpool

    Google Scholar 

  2. Hench LL, Thompson I (2010) Twenty-first century challenges for biomaterials. J R Soc Interface 7(Suppl 4):S379–S391

    Article  Google Scholar 

  3. Hench L (1980) Biomaterials. Science 208(4446):826–831

    Article  Google Scholar 

  4. Rea SM, Bonfield W (2004) Biocomposites for medical applications. J Aust Ceram Soc 40:43–57

    Google Scholar 

  5. Knowles JC (2003) Phosphate based glasses for biomedical applications. J Mater Chem 13(10):2395–2401

    Article  Google Scholar 

  6. Abou Neel EA et al (2009) Bioactive functional materials: a perspective on phosphate-based glasses. J Mater Chem 19(6):690–701

    Article  Google Scholar 

  7. Ahmed I et al (2004) Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25(3):491–499

    Article  Google Scholar 

  8. Abou Neel EA et al (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface 6(34):435–446

    Article  Google Scholar 

  9. Brauer DS et al (2010) Effect of TiO2 addition on structure, solubility and crystallisation of phosphate invert glasses for biomedical applications. J Non-Cryst Solids 356(44–49):2626–2633

    Article  Google Scholar 

  10. Bunker BC, Arnold GW, Wilder JA (1984) Phosphate glass dissolution in aqueous solutions. J Non-Cryst Solids 64(3):291–316

    Article  Google Scholar 

  11. Donald IW et al (2006) The influence of Fe2O3 and B2O3 additions on the thermal properties, crystallization kinetics and durability of a sodium aluminum phosphate glass. J Non-Cryst Solids 352(28–29):2993–3001

    Article  Google Scholar 

  12. Ahmed I et al (2004) Phosphate glasses for tissue engineering: Part 2. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass fibre system. Biomaterials 25(3):501–507

    Article  Google Scholar 

  13. Ahmed I et al (2011) Composites for bone repair: phosphate glass fibre reinforced PLA with varying fibre architecture. J Mater Sci Mater Med 22(8):1825–1834

    Article  Google Scholar 

  14. Han N et al (2013) Influence of screw holes and gamma sterilization on properties of phosphate glass fiber-reinforced composite bone plates. J Biomater Appl 27(8):990–1002

    Article  Google Scholar 

  15. Khan RA, Parsons AJ, Jones IA, Walker GS, Rudd CD (2010) Degradation and interfacial properties of iron phosphate glass fiber-reinforced PCL-based composite for synthetic bone replacement materials. Polym Plast Technol Eng 49(12):1265–1274

    Article  Google Scholar 

  16. Felfel RM et al (2012) Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates. J Biomater Appl 26(7):765–789

    Article  Google Scholar 

  17. Kruger R, Groll J (2012) Fiber reinforced calcium phosphate cements—on the way to degradable load bearing bone substitutes? Biomaterials 33(25):5887–5900

    Article  Google Scholar 

  18. Hench LL, Splinter RJ, Allen WC, Greenlee TK (1971) Bonding mechanisms at the interface of ceramic prosthetic materials. J Biomed Mater 2(Part I):117–141

    Article  Google Scholar 

  19. Hench LL, Clark AE, Schaake JR, Schaake HF (1972) Effects of microstructure on the radiation stability of amorphous semiconductors. J Non-Cryst Solids 8–10:837–843

    Article  Google Scholar 

  20. Shelby JE (2005) Introduction to glass science and technology. Royal Society of Chemistry, London

    Google Scholar 

  21. Aguiar H et al (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non-Cryst Solids 355(8):475–480

    Article  Google Scholar 

  22. Rao KJ (2002) Structural chemistry of glasses. Elsevier, Amsterdam

    Google Scholar 

  23. Clark AE, Pantano CG, Hench LL (1976) Auger spectroscopic analysis of bioglass corrosion films. J Am Ceram Soc 59(1–2):37–39

    Article  Google Scholar 

  24. Hench LL, Splinter RJ, Allen WC, Greenlee TG (1971) Bonding mechanism at the interface of ceramic prosthetic materials. J Biomed Mater 2:117–141

    Article  Google Scholar 

  25. Hench LL, Polak JM (2002) Third-generation biomedical materials. Science 295(5557):1014–1017

    Article  Google Scholar 

  26. Hench LL (1998) Bioceramics. J Am Ceram Soc 81:1705–1728

    Article  Google Scholar 

  27. Wilson J, Pigott GH, Schoen FJ, Hench LL (1981) Toxicology and biocompatibility of bioglasses. J Biomed Mater Res 15(6):805–817

    Article  Google Scholar 

  28. Haimi S, Gorianc G, Moimas L, Lindroos B, Huthala H (2009) Characterization of zinc-releasing three-dimensional bioactive glass scaffolds and their effect on human adipose stem cell proliferation and osteogenic differentiation. Acta Biomater 2009(5):3122–3231

    Article  Google Scholar 

  29. Cannillo V, Sola A (2009) Potassium-based composition for a bioactive glass. Ceram Int 35:3389–3393

    Article  Google Scholar 

  30. Vitale-Brovarone C, Verne E, Bosetti M, Appendino P, Cannas M (2005) Microstructural and in vitro characterization of SiO2–Na2O–CaO–MgO glass-ceramic bioactive scaffolds for bone substitutes. J Mater Sci Mater Med 16:909–917

    Article  Google Scholar 

  31. Vitale-Brovarone C, Miola M, Balagna C, Verne E (2008) 3D-glass-ceramic scaffolds with antibacterial properties for bone grafting. Chem Eng J 2008(137):129–136

    Article  Google Scholar 

  32. Kim CY, Clark AE, Hench LL (1992) Compositional dependence of calcium phosphate layer formation in fluoride Bioglasses. J Biomed Mater Res 26(9):1147–1161

    Article  Google Scholar 

  33. Hsi CS, Cheng HZ, Hsu HJ, Chen YS, Wang MC (2007) Crystallization kinetics and magnetic properties of iron oxide contained 25Li2O–8MnO2–20CaO–2P2O5–45SiO2 glasses. J Eur Ceram Soc 27:3171–3176

    Article  Google Scholar 

  34. Gorriti MF, Lopez JMP, Boccaccini AR, Audisio C, Gorustovich AA (2009) In vitro study of the antibacterial activity of bioactive glass-ceramic scaffolds. Adv Eng Mater 11:67–70

    Article  Google Scholar 

  35. Greenspan DC, Hench LL (1976) Chemical and mechanical behavior of bioglasscoated alumina. J Biomed Mater Res 10:503–509

    Article  Google Scholar 

  36. Cao WH, Larry L (1996) Bioactive materials. Ceram Int 22(6):493–507

    Article  Google Scholar 

  37. Gross UMSV (1980) The anchoring of glass ceramics of different solubility in the femur of the rat. J Biomed Mater Res 1980(14):607–618

    Article  Google Scholar 

  38. Li P et al (1992) Apatite formation induced by silica gel in a simulated body fluid. J Am Ceram Soc 75(8):2094–2097

    Article  Google Scholar 

  39. Liang W et al (2006) Bioactive comparison of a borate, phosphate and silicate glass. J Mater Res 21(01):125–131

    Article  Google Scholar 

  40. Filho OP, La Torre GP, Hench LL (1996) Effect of crystallization on apatite-layer formation of bioactive glass 45S5. J Biomed Mater Res 30(4):509–514

    Article  Google Scholar 

  41. Day DE et al (2003) Transformation of borate glasses into biologically useful materials. Glass Technol 44(2):75–81

    Google Scholar 

  42. Ahmed AA et al (2011) Preparation and characterization of antibacterial P2O5–CaO–Na2O–Ag2O glasses. J Biomed Mater Res, Part A 98A(1):132–142

    Article  Google Scholar 

  43. Huang W et al (2006) Kinetics and mechanisms of the conversion of silicate (45S5), borate, and borosilicate glasses to hydroxyapatite in dilute phosphate solutions. J Mater Sci Mater Med 17(7):583–596

    Article  Google Scholar 

  44. Karabulut M et al (2011) Effect of boron addition on the structure and properties of iron phosphate glasses. J Non-Cryst Solids 357(5):1455–1462

    Article  Google Scholar 

  45. Yao A et al (2007) In vitro bioactive characteristics of borate-based glasses with controllable degradation behavior. J Am Ceram Soc 90(1):303–306

    Article  Google Scholar 

  46. Pan HB et al (2010) Strontium borate glass: potential biomaterial for bone regeneration. J R Soc Interface 7(48):1025–1031

    Article  Google Scholar 

  47. George JL, Brow RK (2015) In-situ characterization of borate glass dissolution kinetics by μ-Raman spectroscopy. J Non-Cryst Solids 426:116–124

    Article  Google Scholar 

  48. Dzondo-Gadet M et al (2002) Action of boron at the molecular level: effects on transcription and translation in an acellular system. Biol Trace Elem Res 85(1):23–33

    Article  Google Scholar 

  49. Liu X et al (2009) Bioactive borosilicate glass scaffolds: improvement on the strength of glass-based scaffolds for tissue engineering. J Mater Sci Mater Med 20(1):365–372

    Article  Google Scholar 

  50. Yang X et al (2012) Incorporation of B2O3 in CaO–SiO2–P2O5 bioactive glass system for improving strength of low-temperature co-fired porous glass ceramics. J Non-Cryst Solids 358(9):1171–1179

    Article  Google Scholar 

  51. Uysal T et al (2009) Stimulation of bone formation by dietary boron in an orthopedically expanded suture in rabbits. Angle Orthod 79(5):984–990

    Article  Google Scholar 

  52. Takebe H, Harada T, Kuwabara M (2006) Effect of B2O3 addition on the thermal properties and density of barium phosphate glasses. J Non-Cryst Solids 352(6–7):709–713

    Article  Google Scholar 

  53. Carta D et al (2009) Sol-gel synthesis and structural characterisation of P2O5–B2O3–Na2O glasses for biomedical applications. J Mater Chem 19(1):150–158

    Article  Google Scholar 

  54. Sharmin N et al (2016) Effect of boron oxide addition on the viscosity-temperature behaviour and structure of phosphate-based glasses. J Biomed Mater Res Part B Appl Biomater doi:10.1002/jbm.b.33610

    Google Scholar 

  55. Sharmin N et al (2013) Effect of boron addition on the thermal, degradation, and cytocompatibility properties of phosphate-based glasses. BioMed Res Int 2013:12

    Article  Google Scholar 

  56. Moustafa YM, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids 240(1–3):144–153

    Article  Google Scholar 

  57. Martin SW (1991) Review of the structures of phosphate glasses. Eur J Solid State Inorg Chem 28:163–205

    Google Scholar 

  58. Ahmed I et al (2004) Phosphate glasses for tissue engineering: Part 1. Processing and characterisation of a ternary-based P2O5–CaO–Na2O glass system. Biomaterials 25(3):491–499

    Article  Google Scholar 

  59. Cruickshank DWJ (1077) The role of 3d-orbitals in [small pi]-bonds between (a) silicon, phosphorus, sulphur, or chlorine and (b) oxygen or nitrogen. J Chem Soc (Resumed) 1961:5486–5504

    Google Scholar 

  60. Mitchell KAR (1969) Use of outer d orbitals in bonding. Chem Rev 69(2):157–178

    Article  Google Scholar 

  61. Van Wazer JR (1958) Phosphorus and its compounds. Interscience Publishers Ltd., London

    Google Scholar 

  62. Brow RK (2000) Review: the structure of simple phosphate glasses. J Non-Cryst Solids 263–264:1–28

    Article  Google Scholar 

  63. Gresch R, Müller-Warmuth W, Dutz H (1979) X-ray photoelectron spectroscopy of sodium phosphate glasses. J Non-Cryst Solids 34(1):127–136

    Article  Google Scholar 

  64. Hoppe U et al (2000) Structural specifics of phosphate glasses probed by diffraction methods: a review. J Non-Cryst Solids 263–264:29–47

    Article  Google Scholar 

  65. Kirkpatrick RJ, Brow RK (1995) Nuclear magnetic resonance investigation of the structures of phosphate and phosphate-containing glasses: a review. Solid State Nucl Magn Reson 5(1):9–21

    Article  Google Scholar 

  66. Walter G, Goerigk G, Rüssel C (2006) The structure of phosphate glass evidenced by small angle X-ray scattering. J Non-Cryst Solids 352(38–39):4051–4061

    Article  Google Scholar 

  67. Jäger C et al (2000) New 2D NMR experiments for determining the structure of phosphate glasses: a review. J Non-Cryst Solids 263–264:61–72

    Article  Google Scholar 

  68. Wetherall KM, Pickup DM, Newport RJ, Mountjoy G (2009) The structure of calcium metaphosphate glass obtained from X-ray and neutron diffraction and reverse Monte Carlo modelling. J Phys: Condens Matter 21(3):035109

    Google Scholar 

  69. Joseph K, Premila M, Amarendra G, Govindan Kutty KG, Sundar CS, Vasudeva Rao PR (2012) Structure of cesium loaded iron phosphate glasses: An infrared and Raman spectroscopy study. J Nucl Mater 420(1–3):49–53

    Article  Google Scholar 

  70. Hoppe U, Walter G, Stachel D (1992) Short range order of metaphosphate glasses investigated by x-ray diffraction. Phys Chem Glasses 33(6):216–221

    Google Scholar 

  71. Bionducci M et al (1996) The structure of a Zn(II) metaphosphate glass. I. The cation coordination by a Combination of X-Ray and Neutron diffraction, EXAFS and X-Ray anomalous scattering. Z fur Naturforschung Sect A J Phys Sci 51(12):1209–1215

    Google Scholar 

  72. Hoppe U et al (1996) Short-range order in KPO3 glass studied by neutron and X-ray diffraction. Z fur Naturforschung Sect A J Phys Sci 51(3):179–186

    Google Scholar 

  73. Meyer K (1998) Characterisation of the structure of binary calcium ultraphosphate glasses by infrared and Raman spectroscopy. Phys Chem Glasses 39(2):108–117

    Google Scholar 

  74. Meyer K, Barz A, Stachel D (1995) Effects of atmospheric humidity on the infrared reflectivity of vitreous P2O5 and ultraphosphate glasses. J Non-Cryst Solids 191(1–2):71–78

    Article  Google Scholar 

  75. Matsubara E et al (1988) Structural study of binary phosphate glasses with MgO, ZnO, and CaO by X-ray diffraction. J Non-Cryst Solids 103(1):117–124

    Article  Google Scholar 

  76. Hudgens JJ et al (1998) Raman spectroscopy study of the structure of lithium and sodium ultraphosphate glasses. J Non-Cryst Solids 223(1–2):21–31

    Article  Google Scholar 

  77. Karabulut M et al (2002) An investigation of the local iron environment in iron phosphate glasses having different Fe(II) concentrations. J Non-Cryst Solids 306(2):182–192

    Article  Google Scholar 

  78. Lee ETY, Taylor ERM (2006) Optical and thermal properties of binary calcium phosphate and barium phosphate glasses. Opt Mater 28(3):200–206

    Article  Google Scholar 

  79. Moustafa YM, El-Egili K (1998) Infrared spectra of sodium phosphate glasses. J Non-Cryst Solids 240(1–3):144–153

    Article  Google Scholar 

  80. Brow RK et al (1994) The short-range structure of sodium ultraphosphate glasses. J Non-Cryst Solids 177:221–228

    Article  Google Scholar 

  81. Fletcher JP, Kirkpatrick RJ, Howell D, Risbud SH (1993) 31P Magic-angle spinning nuclear magnetic resonance spectroscopy of calcium phosphate glasses. J Chem Soc, Faraday Trans 89(17):3297–3299

    Article  Google Scholar 

  82. Charles RJ (1967) Activities in Li2O-Na2O- and K2O-SiO2 solutions. J Am Ceram Soc 50:631–664

    Article  Google Scholar 

  83. Meyer K (1997) Characterization of the structure of binary zinc ultraphosphate glasses by infrared and Raman spectroscopy. J Non-Cryst Solids 209(3):227–239

    Article  Google Scholar 

  84. Karakassides MA, Saranti A, Koutselas I (2004) Preparation and structural study of binary phosphate glasses with high calcium and/or magnesium content. J Non-Cryst Solids 347(1–3):69–79

    Article  Google Scholar 

  85. Parsons AJ et al (2006) Properties of sodium-based ternary phosphate glasses produced from readily available phosphate salts. J Non-Cryst Solids 352(50–51):5309–5317

    Article  Google Scholar 

  86. Moguš-Milanković A et al (2001) Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I. J Non-Cryst Solids 289(1–3):204–213

    Article  Google Scholar 

  87. Yu X et al (1997) Properties and structure of sodium-iron phosphate glasses. J Non-Cryst Solids 215(1):21–31

    Article  Google Scholar 

  88. Franks K, Abrahamas I, Georgiou G, Knowles JC (2001) Investigation of thermal parameters and crytallisation in a ternary CaO–Na2O–P2O5-based glass system. Biomaterials 22(5):497–501

    Article  Google Scholar 

  89. Brow RK, Kirkpatrick RJ, Turner GL (1993) Nature of alumina in phosphate glass: II, structure of sodium alurninophosphate glass. J Am Ceram Soc 76(4):919–928

    Article  Google Scholar 

  90. Mogus-Milankovic A, Gajović A, Santic A, Day DE (2001) Structure of sodium phosphate glasses containing Al2O3 and/or Fe2O3. Part I. J Non-Cryst Solids 289(1–3):204–213

    Article  Google Scholar 

  91. Silva AMB et al (2010) Structural characterization of TiO2–P2O5–CaO glasses by spectroscopy. J Eur Ceram Soc 30(6):1253–1258

    Article  Google Scholar 

  92. Tsuchida J et al (2011) Structure of ternary aluminum metaphosphate glasses. J Phys Chem C 115(44):21927–21941

    Article  Google Scholar 

  93. Walter G et al (2001) The structure of CaO–Na2O–MgO–P2O5 invert glass. J Non-Cryst Solids 296(3):212–223

    Article  Google Scholar 

  94. Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25(16):3223–3232

    Article  Google Scholar 

  95. AbouNeel EA, Chrzanowski W, Pickup DM, O’Dell LA, Mordan NJ, Newport RJ, Smith ME, Knowles JC (2009) Structure and properties of strontium-doped phosphate-based glasses. J R Soc Interface 6(34):435–446

    Article  Google Scholar 

  96. Ahmed I et al (2015) Core/clad phosphate glass fibres containing iron and/or titanium. Biomed Glass 1(1):20–30

    Google Scholar 

  97. Sharmin N et al (2016) Structure, viscosity and fibre drawing properties of phosphate-based glasses: effect of boron and iron oxide addition. J Mater Sci 51(16):7523–7535. doi:10.1007/s10853-016-0032-3

    Article  Google Scholar 

  98. Brauer DR, Rüssel S, Kraft J (2007) Solubility of glasses in the system P2O5–CaO–MgO–Na2O–TiO2: experimental and modeling using artificial neural networks. J Non-Cryst Solids 353(3):263–270

    Article  Google Scholar 

  99. Khan RA, Parsons AJ, Jones IA, Walker GS, Rudd CD (2010) Degradation and interfacial properties of iron phosphate glass fiber-reinforced PCL-based composite for synthetic bone replacement materials. Polym Plast Technol Eng 49(12):1265–1274

    Article  Google Scholar 

  100. Zheng K, Yang S, Wang J, Russel C, Liu C, Liang W (2012) Characteristics and biocompatibility of Na2O–K2O–CaO–MgO–SrO–B2O3–P2O5 borophosphate glass fibers. J Non-Cryst Solids 358(2):387–391

    Article  Google Scholar 

  101. Goel A, Rajagopal RR, Ferreira JMF (2011) Influence of strontium on structure, sintering and biodegradation behaviour of CaO–MgO–SrO–SiO2–P2O5–CaF2 glasses. Acta Biomater 7(11):4071–4080

    Article  Google Scholar 

  102. Brauer DS (2012) Phosphate glasses, in bio-glasses. Wiley, New York, pp 45–64

    Google Scholar 

  103. Shih PY, Chin TS (2001) Preparation of lead-free phosphate glasses with low T g and excellent chemical durability. J Mater Sci Lett 20(19):1811–1813

    Article  Google Scholar 

  104. Sales BC, Boatner LA, Ramey JO (1998) Intermediate-range order in simple metal-phosphate glasses: the effect of metal cations on the phosphate-anion distribution. J Non-Cryst Solids 232–234:107–112

    Article  Google Scholar 

  105. Hudgens JJ, Martin SW (1993) Glass transition and infrared spectra of low-alkali, anhydrous lithium phosphate glasses. J Am Ceram Soc 76(7):1691–1696

    Article  Google Scholar 

  106. Abou Neel EA et al (2005) Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomater 1(5):553–563

    Article  Google Scholar 

  107. Abou Neel EA et al (2005) Characterisation of antibacterial copper releasing degradable phosphate glass fibres. Biomaterials 26(15):2247–2254

    Article  Google Scholar 

  108. Abou Neel EA, Chrzanowski W, Knowles JC (2008) Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater 4(3):523–534

    Article  Google Scholar 

  109. Abou Neel EA et al (2009) Doping of a high calcium oxide metaphosphate glass with titanium dioxide. J Non-Cryst Solids 355(16–17):991–1000

    Article  Google Scholar 

  110. Sharmin N, Hasan MS, Parsons AJ, Rudd CD, Ahmed I (2015) Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites. J Mech Behav Biomed Mater 59:41–56

    Article  Google Scholar 

  111. Harada T et al (2004) Effect of B2O3 addition on the thermal stability of barium phosphate glasses for optical fiber devices. J Am Ceram Soc 87(3):408–411

    Article  Google Scholar 

  112. Toyoda S, Fujino S, Morinaga K (2003) Density, viscosity and surface tension of 50RO–50P2O5 (R: Mg, Ca, Sr, Ba, and Zn) glass melts. J Non-Cryst Solids 321(3):169–174

    Article  Google Scholar 

  113. Parsons AJ et al (2015) Viscosity profiles of phosphate glasses through combined quasi-static and bob-in-cup methods. J Non-Cryst Solids 408:76–86

    Article  Google Scholar 

  114. Smallman RE, BiShop RJ (1999) Chapter 10—Ceramics and glasses. In: Smallman RE, BiShop RJ (eds) Modern physical metallurgy and materials engineering, 6th edn. Butterworth-Heinemann, Oxford, pp 320–350

    Chapter  Google Scholar 

  115. Martin SW, Angell CA (1986) On the glass transition and viscosity of P2O5. J Phys Chem 90:6736–6740

    Article  Google Scholar 

  116. Griffith EJ, Callis CF (1959) Structure and properties of condensed phosphates. XV. Viscosity of ultraphosphate melts1. J Am Chem Soc 81(4):833–836

    Article  Google Scholar 

  117. Angell CA (1991) Relaxation in liquids, polymers and plastic crystals— strong/fragile patterns and problems. J Non-Cryst Solids 131–133, Part 1:13–31

    Article  Google Scholar 

  118. Angell CA (1988) Structural instability and relaxation in liquid and glassy phases near the fragile liquid limit. J Non-Cryst Solids 102(1–3):205–221

    Article  Google Scholar 

  119. Sidebottom D, Changstrom J (2008) Viscoelastic relaxation in molten phosphorus pentoxide using photon correlation spectroscopy. Phys Rev B 77(2):70–78

    Article  Google Scholar 

  120. Böhmer R et al (1993) Nonexponential relaxations in strong and fragile glass formers. J Chem Phys 99(5):4201–4209

    Article  Google Scholar 

  121. Martin SW, Angell CA (1986) On the glass transition and viscosity of P2O5. J Phys Chem 90(25):6736–6740

    Article  Google Scholar 

  122. Gao H, Tan T, Wang D (2004) Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 96(1):21–28

    Article  Google Scholar 

  123. Gao H, Tan T, Wang D (2004) Dissolution mechanism and release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 96(1):29–36

    Article  Google Scholar 

  124. Delahaye F et al (1998) Acid dissolution of sodium–calcium metaphosphate glasses. J Non-Cryst Solids 242(1):25–32

    Article  Google Scholar 

  125. Knowles JC, Franks K, Abrahams I (2001) Investigation of the solubility and ion release in the glass system K2O–Na2O–CaO–P2O5. Biomaterials 22(23):3091–3096

    Article  Google Scholar 

  126. Franks KA, Knowles I, Knowles JC (2000) Development of soluble glasses for biomedical use part I: In vitro solubility measurement. J Mater Sci Mater Med 11(10):609–614

    Article  Google Scholar 

  127. Shih PY, Yung SW, Chin TS (1998) Thermal and corrosion behavior of P2O5-Na2O-CuO glasses. J Non-Cryst Solids 224(2):143–152

    Article  Google Scholar 

  128. Abou Neel EA, Ahmed I, Blaker JJ, Bismarck A, Boccaccini AR, Lewis MP, Nazhat SN, Knowles JC (2005) Effect of iron on the surface, degradation and ion release properties of phosphate-based glass fibres. Acta Biomater 1(5):553–563

    Article  Google Scholar 

  129. Abou Neel EA, Chrzanowski W, Knowles JC (2008) Effect of increasing titanium dioxide content on bulk and surface properties of phosphate-based glasses. Acta Biomater 4(3):523–534

    Article  Google Scholar 

  130. Shaharyar Y et al (2015) Structure-solubility relationships in fluoride-containing phosphate based bioactive glasses. J Mater Chem B 3(48):9360–9373

    Article  Google Scholar 

  131. Yu X, Day DE, Long GJ, Brow RK (1997) Properties and structure of sodium-iron phosphate glasses. J Non-Cryst Solids 215(1):21–31

    Article  Google Scholar 

  132. Shah K et al (2006) Effect of B2O3 addition on microhardness and structural features of 40Na2O–10BaO–xB2O3-(50-x)P2O5; glass system. Bull Mater Sci 29(1):43–48

    Article  Google Scholar 

  133. Gao H, Tan T, Wang D (2004) Effect of composition on the release kinetics of phosphate controlled release glasses in aqueous medium. J Control Release 96(1):21–28

    Article  Google Scholar 

  134. ElBatal FH, ElKheshen A (2008) Preparation and characterization of some substituted bioglasses and their ceramic derivatives from the system SiO2–Na2O–CaO–P2O5 and effect of gamma irradiation. Mater Chem Phys 110(2–3):352–362

    Article  Google Scholar 

  135. Dohler F et al (2015) 31P NMR characterisation of phosphate fragments during dissolution of calcium sodium phosphate glasses. J Mater Chem B 3(6):1125–1134

    Article  Google Scholar 

  136. Avent AG et al (2003) The dissolution of silver–sodium–calcium–phosphate glasses for the control of urinary tract infections. J Non-Cryst Solids 328(1–3):31–39

    Article  Google Scholar 

  137. Schierholz JM et al (1998) Efficacy of silver-coated medical devices. J Hosp Infect 40(4):257–262

    Article  Google Scholar 

  138. Tredget EE et al (1998) A matched-pair, randomized study evaluating the efficacy and safety of acticoat silver-coated dressing for the treatment of burn wounds. J Burn Care Rehabil 19(6):531–537

    Article  Google Scholar 

  139. Lansdown AB (2002) Silver 2: toxicity in mammals and how its products aid wound repair. J Wound Care 11(5):173–177

    Article  Google Scholar 

  140. Mulligan AM, Wilson M, Knowles JC (2003) The effect of increasing copper content in phosphate-based glasses on biofilms of Streptococcus sanguis. Biomaterials 24(10):1797–1807

    Article  Google Scholar 

  141. O’Sullivan TN et al (1991) Copper molluscicides for control of schistosomiasis. 2. Copper phosphate controlled release glass. Environ Sci Technol 25(6):1088–1091

    Article  Google Scholar 

  142. Guo D et al (2005) Development of a strontium-containing hydroxyapatite bone cement. Biomaterials 26(19):4073–4083

    Article  Google Scholar 

  143. Wong CT et al (2004) Ultrastructural study of mineralization of a strontium-containing hydroxyapatite (Sr-HA) cement in vivo. J Biomed Mater Res A 70(3):428–435

    Article  Google Scholar 

  144. Marie PJ et al (2001) Mechanisms of action and therapeutic potential of strontium in bone. Calcif Tissue Int 69(3):121–129

    Article  Google Scholar 

  145. Verberckmoes SC, De Broe ME, D’Haese PC (2003) Dose-dependent effects of strontium on osteoblast function and mineralization. Kidney Int 64(2):534–543

    Article  Google Scholar 

  146. Kraeber-Bodere F et al (2000) Treatment of bone metastases of prostate cancer with strontium-89 chloride: efficacy in relation to the degree of bone involvement. Eur J Nucl Med 27(10):1487–1493

    Article  Google Scholar 

  147. Sharmin N et al (2016) Cytocompatibility, mechanical and dissolution properties of high strength boron and iron oxide phosphate glass fibre reinforced bioresorbable composites. J Mech Behav Biomed Mater 59:41–56

    Article  Google Scholar 

  148. Bitar M et al (2004) Soluble phosphate glasses: in vitro studies using human cells of hard and soft tissue origin. Biomaterials 25(12):2283–2292

    Article  Google Scholar 

  149. Salih V et al (2000) Development of soluble glasses for biomedical use Part II: the biological response of human osteoblast cell lines to phosphate-based soluble glasses. J Mater Sci Mater Med 11(10):615–620

    Article  Google Scholar 

  150. Uo M et al (1998) Properties and cytotoxicity of water soluble Na2O–CaO–P2O5 glasses. Biomaterials 19(24):2277–2284

    Article  Google Scholar 

  151. Ahmed I et al (2010) Cytocompatibility and effect of increasing MgO content in a range of quaternary invert phosphate-based glasses. J Biomater Appl 24(6):555–575

    Article  Google Scholar 

  152. Ahmed I et al (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25(16):3223–3232

    Article  Google Scholar 

  153. Saranti A, Koutselas I, Karakassides MA (2006) Bioactive glasses in the system CaO–B2O3–P2O5: preparation, structural study and in vitro evaluation. J Non-Cryst Solids 352(5):390–398

    Article  Google Scholar 

  154. Lakhkar NJ et al (2009) Strontium oxide doped quaternary glasses: effect on structure, degradation and cytocompatibility. J Mater Sci Mater Med 20(6):1339–1346

    Article  Google Scholar 

  155. Lakhkar N et al (2011) Titanium and strontium-doped phosphate glasses as vehicles for strontium ion delivery to cells. J Biomater Appl 25(8):877–893

    Article  Google Scholar 

  156. Wallenberger FT, Weston NE (2002) Glass fibers from high and low viscosity melts. Mater Res Soc Symp 702:165–172

    Google Scholar 

  157. Sharmin N et al (2014) Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5. J Biomater Appl 29(5):639–653

    Article  Google Scholar 

  158. Murgatroyd JB (1948) The delayed elastic effect in glass fibres and the constitution of glass in fibre form. J Soc Glass Technol 32:291–300

    Google Scholar 

  159. Loewenstein KL (1975) The manufacture of continuous glass fibres. Platin Metal Rev 19(3):82–87

    Google Scholar 

  160. Wallenberger FT (2010) The liquidus temperature; Its critical role in glass manufacturing. Int J Appl Glass Sci 1(2):151–163

    Article  Google Scholar 

  161. Clupper DC et al (2003) In vitro bioactivity of S520 glass fibers and initial assessment of osteoblast attachment. J Biomed Mater Res A 67(1):285–294

    Article  Google Scholar 

  162. Chen Z, Chen ZF, Xu TZ, Qiu JL, Zhou JM (2012) Glass fibers as engineering materials. Appl Mech Mater 121–126:181–185

    Google Scholar 

  163. Sharmin N et al (2014) Effect of boron oxide addition on fibre drawing, mechanical properties and dissolution behaviour of phosphate-based glass fibres with fixed 40, 45 and 50 mol% P2O5. J Biomater Appl 29(5):639–653

    Article  Google Scholar 

  164. Pukh VP, Baikova LG (1993) Structural strength of glass. In: Conference of the European Society of Glass Science

  165. Stockhorst H, Bruckner R (1986) Structure sensitive measurements on phosphate glass fibers. J Non-Cryst Solids 85(1–2):105–126

    Article  Google Scholar 

  166. Baikova LG, Fedorov YK, Pukh VP, Pesina TI, Kazannikova TP, Tikhonova LV, Tikhonova MF (1993) Effect of cation field strength on the mechanical properties of R2O–Al2O3–P2O5 glasses. Glass Phys Chem 19(5):380–383

    Google Scholar 

  167. Kurkjian CR (2000) Mechanical properties of phosphate glasses. J Non-Cryst Solids 263&264:207–212

    Article  Google Scholar 

  168. Lin ST et al (1994) Development of bioabsorbable glass fibres. Biomaterials 15(13):1057–1061

    Article  Google Scholar 

  169. Kim N-J, Im S-H, Kim D-H, Yoon D-K, Ryu B-K (2000) Structure and properties of borophosphate glasses. Electron Mater Lett 6(3):103–106

    Article  Google Scholar 

  170. Koudelka L, Mošner P (2000) Borophosphate glasses of the ZnO–B2O3–P2O5 system. Mater Lett 42(3):194–199

    Article  Google Scholar 

  171. Qiu D et al (2008) A high-energy X-ray diffraction, 31P and 11B solid-state NMR study of the structure of aged sodium borophosphate glasses. Mater Chem Phys 111(2–3):455–462

    Article  Google Scholar 

  172. Rinke MT, Eckert H (2011) The mixed network former effect in glasses: solid state NMR and XPS structural studies of the glass system (Na2O)x(BPO4)1 − x. Phys Chem Chem Phys 13(14):6552–6565

    Article  Google Scholar 

  173. Carta D et al (2008) The effect of composition on the structure of sodium borophosphate glasses. J Non-Cryst Solids 354(31):3671–3677

    Article  Google Scholar 

  174. De Diego MA, Coleman NJ, Hench LL (2000) Tensile properties of bioactive fibers for tissue engineering applications. J Biomed Mater Res 53(3):199–203

    Article  Google Scholar 

  175. Messier DR, Patel PJ (1995) High modulus glass fibers. J Non-Cryst Solids 182(3):271–277

    Article  Google Scholar 

  176. Griffith AA (1920) The phenomenom of rupture and flow in solids. Philos Trans R Soc Lond Ser A 221:163–198

    Article  Google Scholar 

  177. Pähler G, Brückner R (1982) Mechanical properties and structural aspects of binary phosphate glass fibers. J Non-Cryst Solids 49(1–3):487–496

    Article  Google Scholar 

  178. Otto WH (1955) Relationship of tensile strength of glass fibers to diameter. J Am Ceram Soc 38(3):122–125

    Article  Google Scholar 

  179. Brow RK, Lower NP (2009) The effects of melt history on the failure characteristics of pristine glass fibre. J Glass Sci Technol 50(1):31–33

    Google Scholar 

  180. Muñoz F et al (2008) A study on the anisotropy of phosphate glass fibres. Glass Technol: Eur J Glass Sci Technol, Part A 49(1):47–52

    Google Scholar 

  181. Otto WH (1961) Compaction effects in glass fibers. J Am Ceram Soc 44(2):68–72

    Article  Google Scholar 

  182. Rinehart JD et al (1999) Real-time dissolution measurement of sized and unsized calcium phosphate glass fibers. J Biomed Mater Res 48(6):833–840

    Article  Google Scholar 

  183. Gross JG, Bou-Gharios G, Morgan JE (1999) Potentiation of myoblast transplantation by host muscle irradiation is dependent on the rate of radiation delivery. Cell Tissue Res 298(2):371–375

    Article  Google Scholar 

  184. Kim Y-P et al (2012) Phosphate glass fibres promote neurite outgrowth and early regeneration in a peripheral nerve injury model. J Tissue Eng Regen Med 25:112–117

    Google Scholar 

  185. Hutmacher DW, Sittinger M, Risbud MV (2004) Scaffold-based tissue engineering: rationale for computer-aided design and solid free-form fabrication systems. Trends Biotechnol 22(7):354–362

    Article  Google Scholar 

  186. Nazhat SN et al (2006) Controlled microchannelling in dense collagen scaffolds by soluble phosphate glass fibers. Biomacromolecules 8(2):543–551

    Article  Google Scholar 

  187. Ahmed I et al (2008) Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater 4(5):1307–1314

    Article  Google Scholar 

  188. Park J, Lakes RS (2007) Biomaterials : an introduction. Springer, New York

    Google Scholar 

  189. Ramakrishna S et al (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Article  Google Scholar 

  190. Pietrzak WS, Sarver D, Verstynen M (1996) Bioresorbable implants—practical considerations. Bone 19(1, Supplement 1):S109–S119

    Article  Google Scholar 

  191. Athanasiou KA et al (1998) Orthopaedic applications for PLA-PGA biodegradable polymers. Arthrosc J Arthrosc Relat Surg 14(7):726–737

    Article  Google Scholar 

  192. Middleton JC, Tipton AJ (2000) Synthetic biodegradable polymers as orthopedic devices. Biomaterials 21(23):2335–2346

    Article  Google Scholar 

  193. Barrows T (1986) Degradable implant materials: a review of synthetic absorbable polymers and their applications. Clin Mater 1(4):233–257

    Article  Google Scholar 

  194. Van de Velde K, Kiekens P (2002) Biopolymers: overview of several properties and consequences on their applications. Polym Testing 21(4):433–442

    Article  Google Scholar 

  195. Pietrzak WS, Sarver DR, Verstynen ML (1997) Bioabsorbable polymer science for the practicing surgeon. J Craniofac Surg 8(2):87–91

    Article  Google Scholar 

  196. Sharmin N et al (2012) Effectiveness of silane monomer on chitosan films and PCL-based tri-layer films. J Appl Polym Sci 125(1):224–232

    Article  Google Scholar 

  197. Hossain KM et al (2015) Tubular scaffold with shape recovery effect for cell guide applications. J Funct Biomater 6(3):564–584

    Article  Google Scholar 

  198. Gunatillake PA, Adhikari R (2003) Biodegradable synthetic polymers for tissue engineering. Eur Cell Mater 5:1–16 (discussion 16)

    Article  Google Scholar 

  199. Ankur SK, Anil M (2008) Polymers for biomedical applications. In: Polymers for biomedical applications. American Chemical Society, pp 1–7

  200. Danhier F et al (2012) PLGA-based nanoparticles: an overview of biomedical applications. J Controlled Release 161(2):505–522

    Article  Google Scholar 

  201. Daniels AU, Chang MK, Andriano KP (1990) Mechanical properties of biodegradable polymers and composites proposed for internal fixation of bone. J Appl Biomater 1(1):57–78

    Article  Google Scholar 

  202. Avinc O, Khoddami A (2009) Overview of Poly(lactic acid) (PLA) Fibre. Fibre Chem 41(6):391–401

    Article  Google Scholar 

  203. Graves GA, Kumar B (1986) Bioabsorbable glass fibers for use in the reinforcement of bioabsorbable polymers for bone fixation devices and artificial ligaments. Google Patents

  204. Navarro M et al (2005) In vitro degradation behavior of a novel bioresorbable composite material based on PLA and a soluble CaP glass. Acta Biomater 1(4):411–419

    Article  Google Scholar 

  205. Bergsma JE et al (1995) Late degradation tissue response to poly(L-lactide) bone plates and screws. Biomaterials 16(1):25–31

    Article  Google Scholar 

  206. Ahmed I, Cronin PS, Abou Neel EA, Parsons AJ, Knowles JC, Rudd CD (2009) Retention of mechanical properties and cytocompatibility of a phosphate-based glass fiber/polylactic acid composite. J Biomed Mater Res Part B Appl Biomater 89B(1):18–27

    Article  Google Scholar 

  207. Bonfield W (1988) Hydroxyapatite-reinforced polyethylene as an analogous material for bone replacementa. Ann N Y Acad Sci 523(1):173–177

    Article  Google Scholar 

  208. Ahmed I, Collins CA, Lewis MP, Olsen I, Knowles JC (2004) Processing, characterisation and biocompatibility of iron-phosphate glass fibres for tissue engineering. Biomaterials 25:3223–3232

    Article  Google Scholar 

  209. Navarro M, Ginebra M, Planell JA (2003) Cellular response to calcium phosphate glasses with controlled solubility. J Biomed Mater Res Part A Appl Biomater 67A(3):1009–1015

    Article  Google Scholar 

  210. Abou Neel EA, Knowles JC (2008) Physical and biocompatibility studies of novel titanium dioxide doped phosphate-based glasses for bone tissue engineering applications. J Mater Sci Mater Med 19(1):377–386

    Article  Google Scholar 

  211. Brauer DS et al (2008) Degradable phosphate glass fiber reinforced polymer matrices: mechanical properties and cell response. J Mater Sci Mater Med 19(1):121–127

    Article  Google Scholar 

  212. Felfel R (2013) Manufacture and characterisation of bioresorbable fibre reinforced composite rods and screws for bone fracture fixation applications, in mechanical engeeniering. University of Nottingham, Nottingham

    Google Scholar 

  213. Parsons AJ et al (2009) Phosphate glass fibre composites for bone repair. J Bionic Eng 6(4):318–323

    Article  Google Scholar 

  214. Felfel RM et al (2012) Investigation of crystallinity, molecular weight change, and mechanical properties of PLA/PBG bioresorbable composites as bone fracture fixation plates. J Biomater Appl 26(7):765–789

    Article  Google Scholar 

  215. Evans SL, Gregson PJ (1998) Composite technology in load-bearing orthopaedic implants. Biomaterials 19(15):1329–1342

    Article  Google Scholar 

  216. Lassila LVJ, Nohrström T, Vallittu PK (2002) The influence of short-term water storage on the flexural properties of unidirectional glass fiber-reinforced composites. Biomaterials 23(10):2221–2229

    Article  Google Scholar 

  217. Dhakal HN, Zhang ZY, Richardson MOW (2007) Effect of water absorption on the mechanical properties of hemp fibre reinforced unsaturated polyester composites. Compos Sci Technol 67:1674–1683

    Article  Google Scholar 

  218. Ahmed I et al (2008) Weight loss, ion release and initial mechanical properties of a binary calcium phosphate glass fibre/PCL composite. Acta Biomater 4(5):1307–1314

    Article  Google Scholar 

  219. Mohammadi MS et al (2011) Effect of phosphate-based glass fibre surface properties on thermally produced poly(lactic acid) matrix composites. J Mater Sci Mater Med 22(12):2659–2672

    Article  Google Scholar 

  220. Andriano KP, Daniels AU, Heller J (1992) Biocompatibility and mechanical properties of a totally absorbable composite material for orthopaedic fixation devices. J Appl Biomater 3(3):197–206

    Article  Google Scholar 

  221. Kobayashi HYLS, Brauer DS, Rüssel C (2010) Mechanical properties of a degradable phosphate glass fibre reinforced polymer composite for internal fracture fixation. Mater Sci Eng, C 30(7):1003–1007

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to acknowledge the financial support from the NSFC Research Fund for International Young Scientists (Project Code: 51650110504).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nusrat Sharmin.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sharmin, N., Rudd, C.D. Structure, thermal properties, dissolution behaviour and biomedical applications of phosphate glasses and fibres: a review. J Mater Sci 52, 8733–8760 (2017). https://doi.org/10.1007/s10853-017-0784-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0784-4

Keywords

Navigation