Bioactive glass coating on gelatin scaffolds at ambient temperature: easy route to make polymer scaffolds become bioactive

Abstract

Increasing the bioactivity of polymeric materials used for bone repair is a concern that can be achieved by loading growth factors or using in vitro tissue engineering approach. However, these techniques may have to address regulatory issues as the implants are shifted from the medical device class to the more constraining drug delivery systems. Alternatively, implants can be coated with bioceramics to achieve bioactivity, but existing coating processes can hardly be applied to polymers because they usually involve thermal treatments or sintering. Here we report an efficient way of coating a bioactive glass phase onto a complex polymeric substrate, namely gelatin scaffolds with controlled spherical porosity, at ambient temperature through a dip-coating process. A multiscale analysis of the bioactive glass-coated gelatin scaffolds properties has been carried out. Homogeneous and remarkably uniform layer of SiO2–CaO bioactive glass is obtained. The bioactive glass coating exhibits a very high and fast apatite-forming ability, with full mineralization of the coating being achieved in less than 24 h contact with body fluids. Importantly, the mineralization takes place homogeneously throughout the scaffold while the remarkable uniformity and thickness regularity of the coating are preserved. These features should enhance the in vivo behaviour of polymer scaffolds and make reconsider the interest of non-bioactive polymers for tissue engineering.

This is a preview of subscription content, log in to check access.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

References

  1. 1

    Ramakrishna S, Mayer J, Wintermantel E, Leong KW (2001) Biomedical applications of polymer-composite materials: a review. Compos Sci Technol 61(9):1189–1224

    Article  Google Scholar 

  2. 2

    Surmenev RA, Surmeneva MA, Ivanova AA (2014) Significance of calcium phosphate coatings for the enhancement of new bone osteogenesis: a review. Acta Biomater 10(2):557–579

    Article  Google Scholar 

  3. 3

    Heimann RB (2016) The challenge and promise of low-temperature bioceramic coatings: an editorial. Surf Coat Technol 301:1–5

    Article  Google Scholar 

  4. 4

    Creugers N (2002) The survival of hydroxyapatite-coated implants is questioned. Evid Based Dent 3(3):77–78

    Article  Google Scholar 

  5. 5

    Coathup MJ, Blackburn J, Goodship AE, Cunningham JL, Smith T, Blunn GW (2005) Role of hydroxyapatite coating in resisting wear particle migration and osteolysis around acetabular components. Biomaterials 26(19):4161–4169

    Article  Google Scholar 

  6. 6

    Jones JR (2013) Review of bioactive glass: from Hench to hybrids. Acta Biomater 9(1):4457–4486

    Article  Google Scholar 

  7. 7

    Gomez-Vega JM, Saiz E, Tomsia AP, Oku T, Suganuma K, Marshall GW, Marshall SJ (2000) Novel bioactive functionally graded coatings on Ti6Al4V. Adv Mater 12(12):894–898

    Article  Google Scholar 

  8. 8

    Fathi MH, Doost A (2008) Mohammadi, preparation and characterization of sol–gel bioactive glass coating for improvement of biocompatibility of human body implant. Mater Sci Eng A 474(1–2):128–133

    Article  Google Scholar 

  9. 9

    Garcia C, Ceré S, Durän A (2004) Bioactive coatings prepared by sol–gel on stainless steel 316L. J Non Cryst Solids 348:218–224

    Article  Google Scholar 

  10. 10

    Moritz N, Rossi S, Vedel E, Tirri T, Ylänen H, Aro H, Närhi T (2004) Implants coated with bioactive glass by CO2-laser, an in vivo study. J Mater Sci Mater Med 15(7):795–802

    Article  Google Scholar 

  11. 11

    Mistry S, Kundu D, Datta S, Basu D (2011) Comparison of bioactive glass coated and hydroxyapatite coated titanium dental implants in the human jaw bone. Aust Dent J 56(1):68–75

    Article  Google Scholar 

  12. 12

    Kokubo T, Kim HM, Miyaji F, Takadama H, Miyazaki T (1999) Ceramic-metal and ceramic-polymer composites prepared by a biomimetic process. Compos A 30(4):405–409

    Article  Google Scholar 

  13. 13

    Kokubo T, Kim H-M, Kawashita M (2003) Novel bioactive materials with different mechanical properties. Biomaterials 24(13):2161–2175

    Article  Google Scholar 

  14. 14

    Kokubo T (1996) Formation of biologically active bone-like apatite on metals and polymers by a biomimetic process. Thermochim Acta 280–281:479–490

    Article  Google Scholar 

  15. 15

    Tanahashi M, Yao T, Kokubo T, Minoda M, Miyamoto T, Nakamura T, Yamamuro T (1994) Apatite coating on organic polymers by a biomimetic process. J Am Ceram Soc 77(11):2805–2808

    Article  Google Scholar 

  16. 16

    Miyaji F, Kim H-M, Handa S, Kokubo T, Nakamura T (1999) Bonelike apatite coating on organic polymers: novel nucleation process using sodium silicate solution. Biomaterials 20(10):913–919

    Article  Google Scholar 

  17. 17

    Oliveira AL, Costa SA, Sousa RA, Reis RL (2009) Nucleation and growth of biomimetic apatite layers on 3D plotted biodegradable polymeric scaffolds: effect of static and dynamic coating conditions. Acta Biomater 5(5):1626–1638

    Article  Google Scholar 

  18. 18

    Oliveira AL, Malafaya PB, Reis RL (2003) Sodium silicate gel as a precursor for the in vitro nucleation and growth of a bone-like apatite coating in compact and porous polymeric structures. Biomaterials 24(15):2575–2584

    Article  Google Scholar 

  19. 19

    Pernot F, Zarzycki J, Baldet P, Bonnel F, Rabischong P (1985) In vivo corrosion of sodium silicate glasses. J Biomed Mater Res 19(3):293–301

    Article  Google Scholar 

  20. 20

    Kent Leach J, Kaigler D, Wang Z, Krebsbach PH, Mooney DJ (2006) Coating of VEGF-releasing scaffolds with bioactive glass for angiogenesis and bone regeneration. Biomaterials 27(17):3249–3255

    Article  Google Scholar 

  21. 21

    Day RM, Boccaccini AR, Shurey S, Roether JA, Forbes A, Hench LL, Gabe SM (2004) Assessment of polyglycolic acid mesh and bioactive glass for soft-tissue engineering scaffolds. Biomaterials 25(27):5857–5866

    Article  Google Scholar 

  22. 22

    Li H, Chen S, Wu Y, Jiang J, Ge Y, Gao K, Zhang P, Wu L (2012) Enhancement of the osseointegration of a polyethylene terephthalate artificial ligament graft in a bone tunnel using 58S bioglass. Int Orthop 36(1):191–197

    Article  Google Scholar 

  23. 23

    Li H, Wu Y, Ge Y, Jiang J, Gao K, Zhang P, Wu L, Chen S (2011) Composite coating of 58S bioglass and hydroxyapatite on a polyethylene terepthalate artificial ligament graft for the graft osseointegration in a bone tunnel. Appl Surf Sci 257(22):9371–9376

    Article  Google Scholar 

  24. 24

    Stamboulis A, Hench LL, Boccaccini AR (2002) Mechanical properties of biodegradable polymer sutures coated with bioactive glass. J Mater Sci Mater Med 13(9):843–848

    Article  Google Scholar 

  25. 25

    Niiranen H, Törmälä P (1999) Bioabsorbable polymer plates coated with bioactive glass spheres. J Mater Sci Mater Med 10(12):707–710

    Article  Google Scholar 

  26. 26

    Lin S, Ionescu C, Pike KJ, Smith ME, Jones JR (2009) Nanostructure evolution and calcium distribution in sol–gel derived bioactive glass. J Mater Chem 19(9):1276–1282

    Article  Google Scholar 

  27. 27

    Pereira MM, Clark AE, Hench LL (1994) Calcium phosphate formation on sol–gel-derived bioactive glasses in vitro. J Biomed Mater Res 28(6):693–698

    Article  Google Scholar 

  28. 28

    Ramila A, Balas F, Vallet-Regi M (2002) Synthesis routes for bioactive Sol–Gel glasses: alkoxides versus nitrates. Chem Mater 14(2):542–548

    Article  Google Scholar 

  29. 29

    Yu B, Turdean-Ionescu CA, Martin RA, Newport RJ, Hanna JV, Smith ME, Jones JR (2012) Effect of calcium source on structure and properties of sol–gel derived bioactive glasses. Langmuir 28(50):17465–17476

    Article  Google Scholar 

  30. 30

    Balian G, Bowes JH (1977) The structure and properties of collagen. Academic Press, London

    Google Scholar 

  31. 31

    Cortesi R, Nastruzzi C, Davis SS (1998) Sugar cross-linked gelatin for controlled release: microspheres and disks. Biomaterials 19(18):1641–1649

    Article  Google Scholar 

  32. 32

    Okino H, Manabe T, Tanaka M, Matsuda T (2003) Novel therapeutic strategy for prevention of malignant tumor recurrence after surgery: local delivery and prolonged release of adenovirus immobilized in photocured, tissue-adhesive gelatinous matrix. J Biomed Mater Res Part A 66A(3):643–651

    Article  Google Scholar 

  33. 33

    Tao X, Shaolin L, Yaoting Y (2003) Preparation and culture of hepatocyte on gelatin microcarriers. J Biomed Mater Res Part A 65A(2):306–310

    Article  Google Scholar 

  34. 34

    Elisabettacenni, Ciapetti G, Stea S, Corradini A, Carozzi F (2000) Biocompatibility and performance in vitro of a hemostatic gelatin sponge. J Biomater Sci Polym Ed 11(7):685–699

    Article  Google Scholar 

  35. 35

    Chen K-Y, Shyu P-C, Dong G-C, Chen Y-S, Kuo W-W, Yao C-H (2009) Reconstruction of calvarial defect using a tricalcium phosphate-oligomeric proanthocyanidins cross-linked gelatin composite. Biomaterials 30(9):1682–1688

    Article  Google Scholar 

  36. 36

    Chen T-M, Yao C-H, Wang H-J, Chou G-H, Lee T-W, Lin F-H (1998) Evaluation of a novel malleable, biodegradable osteoconductive composite in a rabbit cranial defect model. Mater Chem Phys 55(1):44–50

    Article  Google Scholar 

  37. 37

    Yao C-H, Liu B-S, Hsu S-H, Chen Y-S (2005) Calvarial bone response to a tricalcium phosphate-genipin crosslinked gelatin composite. Biomaterials 26(16):3065–3074

    Article  Google Scholar 

  38. 38

    Handa T, Anada T, Honda Y, Yamazaki H, Kobayashi K, Kanda N, Kamakura S, Echigo S, Suzuki O (2012) The effect of an octacalcium phosphate co-precipitated gelatin composite on the repair of critical-sized rat calvarial defects. Acta Biomater 8(3):1190–1200

    Article  Google Scholar 

  39. 39

    Lien S-M, Chien C-H, Huang T-J (2009) A novel osteochondral scaffold of ceramic-gelatin assembly for articular cartilage repair. Mater Sci Eng C 29(1):315–321

    Article  Google Scholar 

  40. 40

    Descamps M, Duhoo T, Monchau F, Lu J, Hardouin P, Hornez JC, Leriche A (2008) Manufacture of macroporous beta-tricalcium phosphate bioceramics. J Eur Ceram Soc 28(1):149–157

    Article  Google Scholar 

  41. 41

    Draghi L, Resta S, Pirozzolo M, Tanzi M (2005) Microspheres leaching for scaffold porosity control. J Mater Sci Mater Med 1612:1093–1097

    Article  Google Scholar 

  42. 42

    Descamps M, Richart O, Hardouin P, Hornez JC, Leriche A (2008) Synthesis of macroporous beta-tricalcium phosphate with controlled porous architectural. Ceram Int 34(5):1131–1137

    Article  Google Scholar 

  43. 43

    Callcut S, Knowles JC (2002) Correlation between structure and compressive strength in a reticulated glass-reinforced hydroxyapatite foam. J Mater Sci Mater Med 13(5):485–489

    Article  Google Scholar 

  44. 44

    Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27(15):2907–2915

    Article  Google Scholar 

  45. 45

    Bohner M, Lemaitre J (2009) Can bioactivity be tested in vitro with SBF solution? Biomaterials 30(12):2175–2179

    Article  Google Scholar 

  46. 46

    Skipper LJ, Sowrey FE, Pickup DM, Drake KO, Smith ME, Saravanapavan P, Hench LL, Newport RJ (2005) The structure of a bioactive calcia-silica sol–gel glass. J Mater Chem 15(24):2369–2374

    Article  Google Scholar 

  47. 47

    Poologasundarampillai G, Yu B, Jones JR, Kasuga T (2011) Electrospun silica/PLLA hybrid materials for skeletal regeneration. Soft Matter 7(21):10241

    Article  Google Scholar 

  48. 48

    Dieudonné X, Montouillout V, Jallot E, Fayon F, Lao J (2014) Bioactive glass hybrids: a simple route towards the gelatin-SiO2-CaO system. Chem Commun 50(63):8701–8704

    Article  Google Scholar 

  49. 49

    Brinker CJ (1988) Hydrolysis and condensation of silicates: effects on structure. J Non Cryst Solids 100(1):31–50

    Article  Google Scholar 

  50. 50

    Serra J, Gonzàlez P, Liste S, Serra C, Chiussi S, Leon B, Pérez-Amor M, Ylänen HO, Hupa M (2003) FTIR and XPS studies of bioactive silica based glasses. J Non Cryst Solids 332(1):20–27

    Article  Google Scholar 

  51. 51

    Aguiar H, Serra J, Gonzàlez P, Leon B (2009) Structural study of sol–gel silicate glasses by IR and Raman spectroscopies. J Non Cryst Solids 355(8):475–480

    Article  Google Scholar 

  52. 52

    Brinker CJ, Scherer GW (1990) Sol-gel science: the physics and chemistry of sol–gel processing. Academic press, New York

    Google Scholar 

  53. 53

    Sitarz M, Handke M, Mozgawa W (1999) Calculations of silicooxygen ring vibration frequencies, spectrochim. Acta Part A Mol Biomol Spectrosc 55(14):2831–2837

    Article  Google Scholar 

  54. 54

    Innocenzi P (2003) Infrared spectroscopy of sol–gel derived silica-based films: a spectra-microstructure overview. J Non Cryst Solids 316(2–3):309–319

    Article  Google Scholar 

  55. 55

    Cebi N, Durak MZ, Toker OS, Sagdic O, Arici M (2016) An evaluation of Fourier transforms infrared spectroscopy method for the classification and discrimination of bovine, porcine and fish gelatins. Food Chem 190:1109–1115

    Article  Google Scholar 

  56. 56

    Kim H-W, Knowles JC, Kim H-E (2005) Porous scaffolds of gelatin–hydroxyapatite nanocomposites obtained by biomimetic approach: characterization and antibiotic drug release. J Biomed Mater Res 74B(2):686–698

    Article  Google Scholar 

  57. 57

    Bandekar J (1992) Amide modes and protein conformation. Biochim et Biophys Acta (BBA) Protein Struct Mol Enzymol 1120(2):123–143

    Article  Google Scholar 

  58. 58

    Jackson M, Mantsch HH (1995) The use and misuse of FTIR spectroscopy in the determination of protein structure. Crit Rev Biochem Mol Biol 30(2):95–120

    Article  Google Scholar 

  59. 59

    Birshtein VY, Tul’chinskii VM (1982) A study of gelatin by IR spectroscopy. Chem Nat Compd 18(6):697–700

    Article  Google Scholar 

  60. 60

    Hoppe A, Güldal NS, Boccaccini AR (2011) A review of the biological response to ionic dissolution products from bioactive glasses and glass-ceramics. Biomaterials 32(11):2757–2774

    Article  Google Scholar 

  61. 61

    Zreiqat H, Howlett CR, Zannettino A, Evans P, Schulze-Tanzil G, Knabe C, Shakibaei M (2002) Mechanisms of magnesium-stimulated adhesion of osteoblastic cells to commonly used orthopaedic implants. J Biomed Mater Res 62(2):175–184

    Article  Google Scholar 

  62. 62

    Yamasaki Y, Yoshida Y, Okazaki M, Shimazu A, Uchida T, Kubo T, Akagawa Y, Hamada Y, Takahashi J, Matsuura N (2002) Synthesis of functionally graded MgCO3 apatite accelerating osteoblast adhesion. J Biomed Mater Res 62(1):99–105

    Article  Google Scholar 

  63. 63

    Keaveny TM, Morgan EF, Yeh OC (2003) Bone biomechanics. In: Kutz M (ed) Standard handbook of biomedical engineering and design. McGraw-Hill Professional, New York, pp 221–243

    Google Scholar 

  64. 64

    Kopperdahl DL, Keaveny TM (1998) Yield strain behavior of trabecular bone. J Biomech 31(7):601–608

    Article  Google Scholar 

Download references

Acknowledgements

The Conseil Régional d’Auvergne is acknowledged for funding (“New Researcher” Grant). The Centre d’Etudes Nucléaires de Bordeaux-Gradignan and the AIFIRA staff are acknowledged for allowing the PIXE experiments and for technical support.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Jonathan Lao.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lao, J., Dieudonné, X., Benbakkar, M. et al. Bioactive glass coating on gelatin scaffolds at ambient temperature: easy route to make polymer scaffolds become bioactive. J Mater Sci 52, 9129–9139 (2017). https://doi.org/10.1007/s10853-017-0781-7

Download citation

Keywords

  • Apatite
  • Simulated Body Fluid
  • Bioactive Glass
  • PIXE
  • Polymer Scaffold