Skip to main content

Advertisement

Log in

Tailoring the optoelectronic properties of graphyne and graphdiyne: nitrogen/sulfur dual doping versus oxygen containing functional groups

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Modification of nanostructures is essential in designing materials for application in electronics and optoelectronics. In this article, the electronic structure tuning and optical properties engineering of modified graphyne (GY) and graphdiyne (GDY) are investigated by first principles density functional theory (DFT) calculations. The model GY/GDY nanoflakes are subjected to i) edge functionalization by carbonyl and carboxyl groups and ii) doping with N atom and codoping with N,S atoms. The change in the electronic and optical properties of GY/GDY due to systematic functionalization and doping is reported. It is observed that the concentration of impurity is important to tune the energy gap. The energy gap for GY/GDY flakes can be tuned over a range ~1.20 eV by varying the concentration of CO functional group. In contrast, the energy gap is insensitive to the number of COOH groups. Alternatively, the energy gap can be controlled from 0.11 to 0.68 eV by varying the N/S doping level. Upon codoping, S atom plays a role of hole doping and N acts as an electron doping. The optical response of considered systems was also monitored from the infrared to the UV region. Red shift of absorption peaks has been observed for the doped and functionalized GY/GDY flakes as compared to the original pristine systems. Increasing the dopant content results in intensive peaks which are highly shifted to the lower energies. This tunable optical response indicates that modified GY/GDY nanoflakes are prominent candidates for application in UV-light protection devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

References

  1. Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Grigorieva IV, Firsov AA (2004) Electric field effect in atomically thin carbon films. Science 306:666–669

    Article  Google Scholar 

  2. Iijima S (1991) Helical microtubules of graphitic carbon. Nature 354:56–58

    Article  Google Scholar 

  3. Smalley RE (1997) Discovering the fullerenes. Rev Mod Phys 69:723–730

    Article  Google Scholar 

  4. Calizo I, Balandin AA, Bao W, Miao F, Lau CN (2007) Temperature dependence of the raman spectra of graphene and graphene multilayers. Nano Lett 7:2645–2649

    Article  Google Scholar 

  5. Balandin AA (2011) Thermal properties of graphene and nanostructured carbon materials. Nat Mater 10:569–581

    Article  Google Scholar 

  6. Baughman R, Eckhardt H, Kertesz J (1987) Structure property predictions for new planar forms of carbon: layered phases containing sp2 and sp atoms. J Chem Phys 87:6687–6699

    Article  Google Scholar 

  7. Haley M, Brand C, Pak J (1997) Graphene and applications. Chem Int 36:836–838

    Google Scholar 

  8. Peng Q, Dearden AK, Crean J, Han L, Liu Sh, Wen X, De S (2017) New materials graphyne, graphdiyne, graphone, and graphane: review of properties, synthesis, and application in nanotechnology. Nanotechnol Sci Appl 7:1–29

    Google Scholar 

  9. Junjie H, Shuang Ying M, Zhou P, Zhang CX, Chaoyu H, Sun LZ (2012) Magnetic properties of single transition-metal atom absorbed graphdiyne and graphyne sheet from DFT+ U calculations. J Phys Chem C 116:26313–26321

    Article  Google Scholar 

  10. Diederich F (1994) Carbon scaffolding: building acetylenic all-carbon and carbon-rich compound. Nature 369:199–207

    Article  Google Scholar 

  11. Coluci VR, Braga SF, Legoas SB, Galvão DS, Baughman RH (2003) Families of carbon nanotubes: graphyne-based nanotubes. Phys Rev B 68:035430. doi:10.1103/PhysRevB.68.035430

    Article  Google Scholar 

  12. Li G, Li Y, Liu H, Guo Y, Li Y, Zhu D (2010) Architecture of graphdiyne nanoscale films. Chem Commun 46:3256–3258

    Article  Google Scholar 

  13. Zhang H, Zhao X, Zhang M, Luo Y, Li G, Zhao M (2013) Three-dimensional diffusion of molecular hydrogen in graphdiyne: a first-principles study. J Phys D: Appl Phys 46:495307. doi:10.1088/0022-3727/46/49/495307

    Article  Google Scholar 

  14. Yan Z, Wang L, Cheng J, Huang L, Zhu C, Chen C, Miao L, Jiang J (2014) Lithium-decorated oxidized graphyne for hydrogen storage by first principles study. J Appl Phys 116:174304. doi:10.1063/1.4900435

    Article  Google Scholar 

  15. Hwang HJ, Kwon Y, Lee H (2012) Thermodynamically stable calcium-decorated graphyne as a hydrogen storage medium. J Phys Chem C 116:20220–20224

    Article  Google Scholar 

  16. Sun Ch, Searles DJ (2012) Lithium storage on graphdiyne predicted by DFT calculations. J Phys Chem C 116:26222–26226

    Article  Google Scholar 

  17. Jang B, Koo J, Park M, Lee H, Nam J, Kwon Y, Lee H (2013) Graphdiyne as a high-capacity lithium ion battery anode material. Appl Phys Lett 103:263904. doi:10.1063/1.4850236

    Article  Google Scholar 

  18. Lalitha M, Mahadevan SS, Lakshmipathi S (2017) Improved lithium adsorption in boron- and nitrogen substituted graphene derivatives. J Mater Sci 52:815–831. doi:10.1007/s10853-016-0378-6

    Article  Google Scholar 

  19. Hwang HJ, Koo J, Park M, Park N, Kwon Y, Lee H (2013) Multilayer graphynes for lithium ion battery anode. J Phys Chem C 117:6919–6923

    Article  Google Scholar 

  20. Kan EJ, Li ZY, Yang JL, Hou JG (2008) Half-metallicity in edge-modified zigzag graphene nanoribbons. J Am Chem Soc 130:4224–4225

    Article  Google Scholar 

  21. Son YW, Cohen ML, Louie SG (2006) Energy gaps in graphene nanoribbons. Phys Rev Lett 97:216803. doi:10.1103/PhysRevLett.97.216803

    Article  Google Scholar 

  22. Bu H, Zhao M, Zhang H, Wang X, Xi Y, Wang Z (2012) Isoelectronic doping of graphdiyne with boron and nitrogen: stable configurations and band gap modification. J Phys Chem B 116:3934–3939

    Article  Google Scholar 

  23. Deng X, Si M, Dai J (2012) Communication: oscillated band gaps of B/N-codoped α-graphyne. J Chem Phys 137:201101. doi:10.1063/1.4769354

    Article  Google Scholar 

  24. Zhou J, Lv K, Wang Q, Chen XS, Sun Q, Jena P (2011) Electronic structures and bonding of graphyne sheet and its BN analog. J Chem Phys 134:174701. doi:10.1063/1.3583476

    Article  Google Scholar 

  25. Bhattacharya B, Singh NB, Sarkar U (2015) Pristine and BN doped graphyne derivatives for UV light protection. Int J Quantum Chem 115:820–829

    Article  Google Scholar 

  26. Koo J, Huang B, Lee H, Kim G, Nam J, Kwon Y, Lee H (2014) Tailoring the electronic band gap of graphyne. J Phys Chem C 118:2463–2468

    Article  Google Scholar 

  27. Bhattacharya B, Singh NB, Sarkar U (2014) Tuning of band gap due to fluorination of graphyne and graphdiyne. J Phys: Conf Ser 566:012014. doi:10.1088/1742-6596/566/1/012014

    Google Scholar 

  28. Long M, Tang L, Wang D, Li Y, Shuai Z (2011) Electronic structure and carrier mobility in graphdiyne Sheet and nanoribbons: theoretical predictions. ACS Nano 5:2593–2600

    Article  Google Scholar 

  29. Wu W, Guo W, Zeng XC (2013) Intrinsic electronic and transport properties of graphyne sheets and nanoribbons. RSC Nanoscale 5:9264–9276

    Article  Google Scholar 

  30. Kehoe JM, Kiley JH, English JJ, Johnson CA, Petersen RC, Haley M (2000) Carbon networks based on dehydrobenzoannulenes. 3. synthesis of graphyne substructures. Org Lett 2:969–972

    Article  Google Scholar 

  31. Haley MM (2008) Synthesis and properties of annulenic subunits of graphyne and graphdiyne nanoarchitectures. Pure Appl Chem 80:519–532

    Article  Google Scholar 

  32. Johnson CA, Lu Y, Haley MM (2007) Carbon networks based on benzocyclynes. 6. synthesis of graphyne substructures via directed alkyne metathesis. Org Lett 9:3725–3728

    Article  Google Scholar 

  33. Yoshimura T, Inaba A, Sonoda M, Tahara K, Tobe Y, Williams RV (2006) Synthesis and properties of trefoil-shaped tris(hexadehydrotribenzo[12] annulene) and tris(tetradehydrotribenzo[12]annulene). Org Lett 8:2933–2936

    Article  Google Scholar 

  34. Liu HB, Xu JL, Li YJ, Li YL (2010) Aggregate nanostructures of organic molecular materials. Acc Chem Res 43:1496–1508

    Article  Google Scholar 

  35. Zhou G, Paek E, Hwang GS, Manthiram A (2015) Long-life Li/polysulphide batteries with high sulphur loading enabled by lightweight three-dimensional nitrogen/sulphur-codoped graphene sponge. Nat Commun 6:7760. doi:10.1038/ncomms8760

    Article  Google Scholar 

  36. Ai W, Luo Zh, Jiang J, Zhu J, Du Zh, Fan Zh, Xie L, Zhang H, Huang W, Yu T (2014) Nitrogen and sulfur codoped graphene: multifunctional electrode materials for high-performance Li-ion batteries and oxygen reduction reaction. Adv Mater 26:6186–6192

    Article  Google Scholar 

  37. Zhang J, Yang Z, Qiu J, Lee HW (2016) Design and synthesis of nitrogen and sulfur co-doped porous carbon via two-dimensional interlayer confinement for a high-performance anode material for lithium-ion batteries. J Mater Chem A 4:5802–5809

    Article  Google Scholar 

  38. Huang H, Zhu J, Zhang W, Sekhar Tiwary C, Zhang J, Zhang X, Jiang Q, He H, Wu Y, Huang W, Ajayan PM, Yan Q (2016) Controllable codoping of nitrogen and sulfur in graphene for highly efficient Li-oxygen batteries and direct methanol fuel cells. Chem Mater 28:1737–1744

    Article  Google Scholar 

  39. Mohajeri A, Shahsavar A (2016) Li-decoration on the edge oxidized graphyne and graphdiyne: a first principles study. Comput Mater Sci 115:51–59

    Article  Google Scholar 

  40. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA et al (2009) Gaussian 09, revision A.02. Gaussian, Inc, Wallingford

    Google Scholar 

  41. Perdew JP, Burke K, Ernzerhof M (1996) Generalized gradient approximation made simple. Phys Rev Lett 77:3865–3868

    Article  Google Scholar 

  42. Shin H, Kang S, Koo J, Lee H, Kim J, Kwon Y (2014) Cohesion energetics of carbon allotropes: quantum Monte Carlo study. J Chem Phys 140:114702. doi:10.1063/1.4867544

    Article  Google Scholar 

  43. Zhang S, Cai Y, He H, Zhang Y, Liu R, Cao H, Wang M, Liu J, Zhang G, Li Y, Liub H, Li B (2016) Heteroatom doped graphdiyne as efficient metal-free electrocatalyst for oxygen reduction reaction in alkaline medium. J Mater Chem A 4:4738–4744

    Article  Google Scholar 

Download references

Acknowledgements

This work is supported by the Shiraz University Research Council.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Afshan Mohajeri.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 710 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mohajeri, A., Shahsavar, A. Tailoring the optoelectronic properties of graphyne and graphdiyne: nitrogen/sulfur dual doping versus oxygen containing functional groups. J Mater Sci 52, 5366–5379 (2017). https://doi.org/10.1007/s10853-017-0779-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-017-0779-1

Keywords

Navigation