Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler

Abstract

The aim of this study was to evaluate the magnetic properties of hybrid epoxy-based composite materials with magnetic barium ferrite (BaM) and conductive carbon (multi-walled carbon nanotubes and graphite nanoplatelets) fillers. This study was performed in order to fabricate composites with uniform and aligned magnetic components of the filler. The magnetization field dependences of the composites and BaM powder were determined and analyzed using a vibrating magnetometer. Of additional concern was the filler distribution characterization by optical investigation. Coercivity of BaM/epoxy composites increases more than in 4 times in comparison with BaM powder. Composites with aligned filler reveal an anisotropy of the magnetization relative to the alignment axis. However, BaM particles retain their uniform distribution in aligned fibers, which is confirmed by a magnetic remanence-to-saturation magnetization (M(0)/M max) ratio of 0.5.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

References

  1. 1

    Smit J, Wijn HPJ (1959) Ferrites. Philips Technical Library, Eindhoven

    Google Scholar 

  2. 2

    Pullar RC (2014) Magnetic properties of aligned Co2Z hexagonal Z-ferrite fibers. Int J Appl Ceram Technol 11(3):451–456

    Article  Google Scholar 

  3. 3

    Mahgoob A, Hudeish AY (2013) Thermal annealing effect on the structural and magnetic properties of barium hexaferrite powders. Middle-East J Sci Res 15(6):834–839

    Google Scholar 

  4. 4

    Makled MH, Matsui T, Tsuda H, Mabuchi H, El-Mansy MK, Morii K (2005) Magnetic and dynamic mechanical properties of barium ferrite–natural rubber composites. J Mater Process Technol 160:229–233

    Article  Google Scholar 

  5. 5

    Nowosielski R, Babilas R, Dercz G, Pająk L (2008) Microstructure of polymer composite with barium ferrite powder. J Achiev Mat Manuf Eng 31(2):269–274

    Google Scholar 

  6. 6

    Zhang HW, Li J, Su H, Zhou TC, Long Y, Zheng ZL (2013) Development and application of ferrite materials for low temperature co-fired ceramic technology. Chin Phys B 22(11):117504

    Article  Google Scholar 

  7. 7

    Sholiyi O, Lee J, Williams JD (2014) Electromagnetic properties of photodefinable barium ferrite polymer composites. AIP Adv 4:077136

    Article  Google Scholar 

  8. 8

    Ghasemi A, Hossienpour A, Morisako A, Liu X, Ashrafizadeh A (2008) Investigation of the microwave absorptive behavior of doped barium ferrites. Mater Des 29(1):112–117

    Article  Google Scholar 

  9. 9

    Grujić A, Ćosović V, Stajić-Trošić J, Talijan N, Spasojević V, Lazić N, Aleksić R (2010) Dynamic mechanical properties of polymer bonded magnetic materials with different Nd–Fe–B content. In: Proceedings of the 21st workshop on rare-earth permanent magnets and their applications, Bled, Slovenia, pp 213–216

  10. 10

    Stajić-Trošić J, Grujić A, Stijepovi MZ, Nedeljković D, Stajĉić A, Ţak T (2014) Magnetic behaviour of hybrid magnetic composite materials. Zaštita Mater 55(2):170–172

    Google Scholar 

  11. 11

    Fiske TJ, Gokturk H, Kalyon DM (1997) Enhancement of the relative magnetic permeability of polymer composites with hybrid particulate fillers. J Appl Polym Sci 65(7):1371–1377

    Article  Google Scholar 

  12. 12

    Matsui D, Prylutskyy Y, Matzuy L, Le Normand F, Ritter U, Scharff P (2008) Transverse and longitudinal magnetoresistance in graphite intercalated by Co. Phys E 40(7):2630–2634

    Article  Google Scholar 

  13. 13

    Grechnev G, Desnenko V, Fedorchenko A, Panfilov A, Matzui L, Prylutskyy Yu, Grybova M, Ritter U, Scharff P, Kolesnichenko Yu (2010) Structure and magnetic properties of multi-walled carbon nanotubes modified with iron. Low Temp Phys 36(12):1086–1090

    Article  Google Scholar 

  14. 14

    Ritter U, Scharff P, Grechnev G, Desnenko V, Fedorchenko A, Panfilov A, Prylutskyy Yu, Kolesnichenko Yu (2011) Structure and magnetic properties of multi-walled carbon nanotubes modified with cobalt. Carbon 49(13):4443–4448

    Article  Google Scholar 

  15. 15

    Bozorth RM (1993) Ferromagnetism. Wiley-IEEE Press

  16. 16

    Matzui L, Vovchenko L, Prylutskyy Yu, Korotash I, Matzui V, Eklund P, Ritter U, Scharff P (2007) Electromagnetic losses in carbon–epoxy composites. Mater Sci Eng C 27(5-8):1007–1009

    Article  Google Scholar 

  17. 17

    Vovchenko L, Matzui L, Oliynyk V, Launetz V, Prylutskyy Yu, Hui D, Strzhemechny Y (2008) Modified exfoliated graphite as a material for shielding against electromagnetic radiation. Int J Nanosci 7(4–5):263–268

    Article  Google Scholar 

  18. 18

    Peigney A, Laurent Ch, Flahaut E, Bacsa R, Rousset A (2001) Specific surface area of carbon nanotubes and bundles of carbon nanotubes. Carbon 39:507–514

    Article  Google Scholar 

  19. 19

    Korolovych VF, Bulavin LA, Prylutskyy YuI, Khrapatiy SV, Tsierkezos NG, Ritter U (2014) Influence of single-walled carbon nanotubes on thermal expansion of water. Int J Thermophys 35(1):19–31

    Article  Google Scholar 

  20. 20

    Birch ME, Ruda-Eberenz TA, Chai M, Andrews R, Hatfield R (2013) Properties that influence the specific surface areas of carbon nanotubes and nanofibers. Ann Occup Hyg 57(9):1148–1166

    Google Scholar 

  21. 21

    Li N, Huang Y, Du F, He X, Lin X, Gao H, Ma LF, Chen Y, Eklund PC (2006) Electro-magnetic interference (EMI) shielding of single-walled carbon nanotube epoxy composites. Nano Lett 6(6):1141–1145

    Article  Google Scholar 

  22. 22

    Chang H, Yeh Y-M, Huang K-D (2010) Electromagnetic shielding by composite films prepared with carbon fiber, Ni nanoparticles, and multi-walled carbon nanotubes in polyurethane. Mater Trans 51(6):1145–1149

    Article  Google Scholar 

  23. 23

    Song WL, Guan XT, Fan LZ, Cao WQ, Wang CY, Cao MS (2015) Tuning three-dimensional textures with graphene aerogels for ultra-light flexible graphene/texture composites of effective electromagnetic shielding. Carbon 93:151–160

    Article  Google Scholar 

  24. 24

    Chen YJ, Li Y, Chu BTT, Kuo IT, Yip M, Tai N (2015) Porous composites coated with hybrid nano carbon materials perform excellent electromagnetic interference shielding. Compos B Eng 70:231–237

    Article  Google Scholar 

  25. 25

    Melnichenko M, Yakovenko O, Matzui L, Vovchenko L, Oliynyk V, Launetz V (2015) Electrodynamic properties of the nanocarbon/polymer composites with aligned by magnetic field secondary non-conductive component. Proc SPIE 9519:951918

    Article  Google Scholar 

  26. 26

    Yakovenko O, Matzui L, Vovchenko L, Zhuravkov A (2014) Development of carbon nanotube–polymer composites with oriented distribution of MWCNTs induced by electric field. Phys Status Solidi A 211(12):2718–2722

    Article  Google Scholar 

  27. 27

    Lazarenko O, Vovchenko L, Matzui L, Perets Ju (2011) The electronic transport properties of the composites with nanosized carbon fillers. Mol Cryst Liq Cryst 536(1):72–80

    Article  Google Scholar 

  28. 28

    Vovchenko L, Matzui L, Brusylovets O, Oliynyk V, Launets V, Shames A, Yakovenko O, Skoryk N (2016) Synthesis and properties of ferrite nanopowders for epoxy–barium hexaferrite–nanocarbon composites for microwave applications. Mater Werkst 47(2-3):139–148

    Article  Google Scholar 

  29. 29

    Pullar RC, Bhattacharya AK (2006) The magnetic properties of aligned M hexa-ferrite fibres. J Magn Magn Mater 300:490–499

    Article  Google Scholar 

  30. 30

    Thomas S, Kalarikkal N, Jaroszewski M, Jose JP (2015) Advanced polymeric materials: from macro- to nano-length scales. Apple Academic Press, Canada, p 116

    Google Scholar 

  31. 31

    Alsmadi AM, Bsoul I, Mahmood SH, Alnawashi G, Prokeš K, Siemensmeyer K, Klemke B, Nakotte H (2013) Magnetic study of M-type doped barium hexaferrite nanocrystalline particles. J Appl Phys 114:243910-1–243910-8

    Article  Google Scholar 

  32. 32

    El-Sayed AH, Hemeda OM, Tawfik A, Hamad MA (2015) Remarkable magnetic enhancement of type-M hexaferrite of barium in polystyrene polymer. AIP Adv 5:107131

    Article  Google Scholar 

  33. 33

    Lisjak D, Lintunen P, Hujanen A, Varis T, Bolelli G, Lusvarghi L, Jagodic M, Drofenik M (2011) Hexaferrite/polyethylene composite coatings prepared with fame spraying. Mater Lett 65:534–536

    Article  Google Scholar 

  34. 34

    Ponce-Castañeda S, Martínez JR, Ruiz F, Palomares-Sánchez SA, Matutes-Aquino JA (2002) Magnetic properties enhancement of M–Ba ferrites embedded in a SiO2 matrix. J Magn Magn Mater 250:160–163

    Article  Google Scholar 

  35. 35

    Palomares-Sánchez SA, Ponce-Castañeda S, Martínez JR, Chumakov YM, Leccabue F, Watts BE, Salazar-Ortiz R (2006) Structural analysis of barium hexaferrite embedded in an amorphous matrix. Mater Lett 60(8):1076–1079

    Article  Google Scholar 

  36. 36

    Martínez JR, Román de Alba J, Blanco-Esqueda IG, Guerrero-Serrano A, Ortega-Zarzosa G (2013) Coercivity values enhancement by incorporation of magnetic powders in inorganic matrix hosts. New J Glass Ceram 3:1–5

    Article  Google Scholar 

  37. 37

    Perets Yu, Matzui L, Vovchenko L, Prylutskyy Yu, Scharff P, Ritter U (2014) The effect of boron nitride on electrical conductivity of nanocarbon–polymer composites. J Mater Sci 49(5):2098–2105. doi:10.1007/s10853-013-7901-9

    Article  Google Scholar 

  38. 38

    Golubenko Z, Ol’khovik L, Popkov Yu, Sizova Z, Kamzin A (1998) Magnetic anisotropy of a system of nanocrystalline BaO 6Fe2O3 particles. Phys Solid State 40(10):1718–1720

    Article  Google Scholar 

  39. 39

    Mattei J-L, Floc’h ML (2000) A numerical approach of the inner demagnetizing effects in soft magnetic composites. J Magn Magn Mater 215–216:589–591

    Article  Google Scholar 

  40. 40

    Bregara VB, Pavlin M (2004) Effective-susceptibility tensor for a composite with ferromagnetic inclusions: enhancement of effective-media theory and alternative ferromagnetic approach. J Appl Phys 95(11):6289–6293

    Article  Google Scholar 

  41. 41

    Babayan V, Kazantseva NE, Moucka R, Sapurina I, Spivak YM, Moshnikov VA (2012) Combined effect of demagnetizing field and induced magnetic anisotropy on the magnetic properties of manganese–zinc ferrite composites. J Magn Magn Mater 324:161–172

    Article  Google Scholar 

  42. 42

    Sato M, Ishii Y (1989) Simple and approximate expressions of demagnetizing factors of uniformly magnetized rectangular rod and cylinder. J Appl Phys 66(2):983–985

    Article  Google Scholar 

  43. 43

    Wysin GM (2012) Demagnetization fields. https://www.phys.ksu.edu/personal/wysin/notes/demag.pdf

  44. 44

    Moucka R, Lopatin AV, Kazantseva NE, Vilcakova J, Saha P (2007) Enhancement of magnetic losses in hybrid polymer composites with MnZn–ferrite and conductive fillers. J Mater Sci 42(22):9480–9490. doi:10.1007/s10853-007-2081-0

    Article  Google Scholar 

  45. 45

    Li ZW, Gan YB, Xin X, Lin GQ (2008) Characteristics of effective permeability and resonance frequency for barium-ferrite/epoxy composites. J Appl Phys 103:073901

    Article  Google Scholar 

  46. 46

    Yuping W (2006) Development of barium hexaferrite composite materials for microwave absorption. Ph.D. Thesis, Table 1–2. http://www.scholarbank.nus.edu.sg/bitstream/handle/10635/15732/WuYP.pdf?sequence=1

Download references

Funding

This work was supported by the State Foundation for Basic Research of Ukraine (Grant Registration Number is 0116U002561).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Uwe Ritter.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Yakovenko, O.S., Matzui, L.Y., Vovchenko, L.L. et al. Magnetic anisotropy of the graphite nanoplatelet–epoxy and MWCNT–epoxy composites with aligned barium ferrite filler. J Mater Sci 52, 5345–5358 (2017). https://doi.org/10.1007/s10853-017-0776-4

Download citation

Keywords

  • External Magnetic Field
  • Boron Nitride
  • Magnetic Particle
  • Epoxy Matrix
  • Magnetic Hysteresis Loop