Journal of Materials Science

, Volume 52, Issue 9, pp 5309–5323 | Cite as

Understanding the structure–property relationships of the ferroelectric to relaxor transition of the (1 − x)BaTiO3–(x)BiInO3 lead-free piezoelectric system

  • Alicia Manjón-Sanz
  • Caitlin Berger
  • Michelle R. Dolgos
Original Paper


A structural and electromechanical investigation has been performed on (1 − x)BaTiO3–(x)BiInO3 in the region 0.03 ≤ x ≤ 0.12. A gradual structural phase transition has been observed where the structure changes from tetragonal (P4mm) and passes through two regions of coexisting phases: (1) P4mm + R3m in the range 0.03 ≤ x ≤ 0.075 and (2) \( Pm\bar{3}m \) + R3m for 0.10 ≤ x ≤ 0.12. The properties also transition from ferroelectric (x ≤ 0.03) to relaxor ferroelectric (x ≥ 0.05) as the dielectric permittivity maximum becomes temperature and frequency dependent. This transition was also confirmed via polarization-electric field measurements as well as strain-electric field measurements. At the critical composition of x = 0.065, a moderate strain of ~0.104% and an effective piezoelectric coefficient (d 33 * ) of 260 pm/V were observed. The original purpose of this study was to demonstrate the polarization extension mechanism as predicted in the literature, but due to the ferroelectric to relaxor transition, this mechanism was not found to be present in this system. However, this demonstrates that BaTiO3-based lead-free ceramics could be modified to obtain enhanced electromechanical properties for actuator applications.


BaTiO3 Morphotropic Phase Boundary Piezoelectric Response Critical Composition BiScO3 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



This material is based upon work supported by the National Science Foundation under Grant No. DMR-1606909. Use of the Advanced Photon Source at Argonne National Laboratory was supported by the U. S. Department of Energy, Office of Science, Office of Basic Energy Sciences, under Contract No. DE-AC02-06CH11357. This research used resources at the Spallation Neutron Source, a DOE Office of Science User Facility operated by the Oak Ridge National Laboratory. We would like to thank Saul Lapidus and Lynn Ribaud of 11-BM at the APS and Ashfia Huq, Pam Whitfield, and Melanie Kirkham of POWGEN at the SNS for their assistance with our mail-in samples. We would also like to thank David Cann at Oregon State University for use of his equipment for the permittivity measurements and helpful discussions.

Compliance with ethical standards

Conflicts of interest

The authors declare that they have no conflicts of interest regarding this work.

Supplementary material

10853_2017_770_MOESM1_ESM.docx (8.8 mb)
Supplementary material 1 (DOCX 9057 kb)


  1. 1.
    Panda KP (2009) Review: environmental friendly lead-free piezoelectric materials. J Mater Sci 44(19):5049–5062. doi: 10.1007/s10853-009-3643-0 CrossRefGoogle Scholar
  2. 2.
    Roedel J, Jo W, Seifert KTP, Anton EM, Granzow T, Damjanovic D (2009) Perspective on the development of lead-free piezoceramics. J Am Ceram Soc 92(6):1153–1177CrossRefGoogle Scholar
  3. 3.
    Damjanovic D, Klein N, Li J, Porokhonskyy V (2010) What can be expected from Lead-free piezoelectric materials? Funct Mater Lett 3(1):5–13CrossRefGoogle Scholar
  4. 4.
    Gensch CO, Baron Y, Blepp M, Moch K, Moritz S, Deubzer O (2016) Study to assess renewal requests for 29 RoHS 2 Annex III exemptionsGoogle Scholar
  5. 5.
    Fu HX, Cohen RE (2000) Polarization rotation mechanism for ultrahigh electromechanical response in single-crystal piezoelectrics. Nature 403(6767):281–283CrossRefGoogle Scholar
  6. 6.
    Guo R, Cross LE, Park SE, Noheda B, Cox DE, Shirane G (2000) Origin of the high piezoelectric response in PbZr1−xTixO3. Phys Rev Lett 84(23):5423–5426CrossRefGoogle Scholar
  7. 7.
    Bell AJ (2006) Factors influencing the piezoelectric behaviour of PZT and other “morphotropic phase boundary” ferroelectrics. J Mater Sci 41(1):13–25. doi: 10.1007/s10853-005-5913-9 CrossRefGoogle Scholar
  8. 8.
    Damjanovic D (2009) Comments on origins of enhanced piezoelectric properties in ferroelectrics. IEEE Transact Ultrason Ferroelectr Freq Control 56(8):1574–1585CrossRefGoogle Scholar
  9. 9.
    Damjanovic D (2005) Contributions to the piezoelectric effect in ferroelectric single crystals and ceramics. J Am Ceram Soc 88(10):2663–2676CrossRefGoogle Scholar
  10. 10.
    Damjanovic D (2010) A morphotropic phase boundary system based on polarization rotation and polarization extension. Appl Phys Lett 97(6):062906-3CrossRefGoogle Scholar
  11. 11.
    Yao Y, Zhou C, Lv D, Wang D, Wu H, Yang Y, Ren X (2012) Large piezoelectricity and dielectric permittivity in BaTiO3-xBaSnO3 system: the role of phase coexisting. EPL 98(2):27008-6CrossRefGoogle Scholar
  12. 12.
    Akiyama M, Kamohara T, Kano K, Teshigahara A, Takeuchi Y, Kawahara N (2009) Enhancement of piezoelectric response in scandium aluminum nitride alloy thin films prepared by dual reactive cosputtering. Adv Mater 21(5):593–596CrossRefGoogle Scholar
  13. 13.
    Tasnadi F, Alling B, Hoglund C, Wingqvist G, Birch J, Hultman L, Abrikosov IA (2010) Origin of the anomalous piezoelectric response in wurtzite ScxAl1−xN alloys. Phys Rev Lett 104(13):137601–137604CrossRefGoogle Scholar
  14. 14.
    Von AA, Bantle W (1944) Der inverse Piezoeffekt des seignetteelektrischen kristalls KH2PO4. Helv Phys Acta 17:298–318Google Scholar
  15. 15.
    Datta K, Suard E, Thomas PA (2010) Compositionally driven ferroelectric phase transition in xBiInO3-(1 − x)BaTiO3: a lead-free perovskite-based piezoelectric material. Appl Phys Lett 96(22):221902–221903CrossRefGoogle Scholar
  16. 16.
    Megaw HD (ed) (1957) Ferroelectricity in crystals. Methuen, LondonGoogle Scholar
  17. 17.
    Jaffe H (1958) Piezoelectric ceramics. J Am Ceram Soc 41(11):494–498CrossRefGoogle Scholar
  18. 18.
    Belik AA, Stephanovich SY, Lazoryak BI, Takayama-Muromachi E (2006) BiInO3: a polar oxide with GdFeO3-type perovskite structure. Chem Mat 18(7):1964–1968CrossRefGoogle Scholar
  19. 19.
    Eitel RE, Randall CA, Shrout TR, Rehrig PW, Hackenberger W, Park SE (2001) New high temperature morphotropic phase boundary piezoelectrics based on Bi(Me)O3-PbTiO3 ceramics. Jpn J Appl Phys 40(10):5999–6002CrossRefGoogle Scholar
  20. 20.
    Duan RR, Speyer RF, Alberta E, Shrout TR (2004) High curie temperature perovskite BiInO3-PbTiO3 ceramics. J Mater Res 19(7):2185–2193CrossRefGoogle Scholar
  21. 21.
    Li CL, Wang H, Wang B, Wang R (2007) First-principles study of the structure, electronic, and optical properties of orthorhombic BiInO3. Appl Phys Lett 91(7):071902–071903CrossRefGoogle Scholar
  22. 22.
    Li CL, Wang ZQ, Ma DC, Wang CY, Wang BL (2014) Phase stability, electronic structure and optical properties of BiInO3 under strain. Jpn J Appl Phys 47(5):055302–055307Google Scholar
  23. 23.
    Wang J, Tony BH, Lee PL, Ribaud L, Antao SM, Kurtz C, Ramanathan M, Von Dreele RB, Beno MA (2008) A dedicated powder diffraction beamline at the advanced photon source: commissioning and early operational results. Rev Sci Instrum 79(8):085105–085107CrossRefGoogle Scholar
  24. 24.
    Coelho AA (2000) Whole-profile structure solution from powder diffraction data using simulated annealing. J Appl Crystallogr 33(2):899–908CrossRefGoogle Scholar
  25. 25.
    Stephens PW (1999) Phenomenological model of anisotropic peak broadening in powder diffraction. J Appl Crystallogr 32:281–289CrossRefGoogle Scholar
  26. 26.
    Bridges CA, Allix M, Suchomel MR, Kuang X, Sterianou I, Sinclair DC, Rosseinsky MJ (2007) A pure bismuth a site polar perovskite synthesized at ambient pressure. Angew Chem Int Ed 46:8785–8789CrossRefGoogle Scholar
  27. 27.
    Filip’ev VS, Smol’yaninov IP, Fesenko EG, Belyaev I (1960) Synthesis of BiFeO3 and determination of the unit cell. Kristallografiya 5:958Google Scholar
  28. 28.
    Ogihara H, Randall CA, Trolier-McKinstry S (2009) Weakly Coupled Relaxor Behavior of BaTiO3–BiScO3. Ceram J Am Ceram Soc 92(1):110–118CrossRefGoogle Scholar
  29. 29.
    Raengthon N, Cann DP (2012) High temperature electronic properties of BaTiO3–Bi(Zn1/2Ti1/2)O3–BiInO3 for capacitor applications. J Electroceram 28(2–3):165–171CrossRefGoogle Scholar
  30. 30.
    Huang C, Cann DP (2008) Phase transitions and dielectric properties in Bi(Zn1/2Ti1/2)O3–BaTiO3 perovskite solid solutions. J Appl Phys 104(2):024117-4Google Scholar
  31. 31.
    Bootchanont A, Triamnak N, Rujirawat S, Yimnirun R, Cann DP, Guo RY, Bhalla A (2014) Local structure and evolution of relaxor behavior in BaTiO3–Bi(Zn0.5Ti0.5)O3 ceramics. Ceram Int 40(9):14555–14562CrossRefGoogle Scholar
  32. 32.
    Zheng SY, Odendo E, Liu LJ, Shi DP, Huang YM, Fan LL, Chen J, Fang L, Elouadi B (2013) Electrostrictive and relaxor ferroelectric behavior in BiAlO3-modified BaTiO3 lead-free ceramics. J Appl Phys 113(9):094102–094105CrossRefGoogle Scholar
  33. 33.
    Yu HC, Ren W, Ye ZG (2010) Structural, Dielectric, and Ferroelectric Properties of the (1 − x)PbTiO3-xBiAlO3 Solid Solution. IEEE Transact Ultrason Ferroelectr Freq Control 57(10):2177–2181CrossRefGoogle Scholar
  34. 34.
    Inaguma Y, Miyaguchi A, Yoshida M, Katsumata T, Shimojo Y, Wang RP, Sekiya T (2004) High-pressure synthesis and ferroelectric properties in perovskite-type BiScO3–PbTiO3 solid solution. J Appl Phys 95(1):231–235CrossRefGoogle Scholar
  35. 35.
    Eitel RE, Randall CA, Shrout TR, Park SE (2002) Preparation and characterization of high temperature perovskite ferroelectrics in the solid-solution (1 − x)BiScO3-xPbTiO3. Jpn J Appl Phys 41(4A):2099–2104CrossRefGoogle Scholar
  36. 36.
    Dinh TH, Kang JK, Lee JS, Khansur NH, Daniels J, Lee HY, Yao FZ, Wang K, Li JF, Han HS, Jo W (2016) Nanoscale ferroelectric/relaxor composites: origin of large strain in lead-free Bi-based incipient piezoelectric ceramics. J Eur Ceram Soc 36(14):3401–3407CrossRefGoogle Scholar
  37. 37.
    Bai WF, Chen DQ, Zheng P, Shen B, Zhai JW, Ji ZG (2016) Composition- and temperature-driven phase transition characteristics and associated electromechanical properties in Bi0.5Na0.5TiO3-based lead-free ceramics. Dalton Trans 45(20):8573–8586CrossRefGoogle Scholar
  38. 38.
    Bai WF, Shen B, Zhai JW, Liu F, Li P, Liu BH, Zhang Y (2016) Phase evolution and correlation between tolerance factor and electromechanical properties in BNT-based ternary perovskite compounds with calculated end-member Bi(Me0.5Ti0.5)O3 (Me = Zn, Mg, Ni, Co). Dalton Trans 45(36):14141–14153CrossRefGoogle Scholar
  39. 39.
    Jo W, Dittmer R, Acosta M, Zang J, Groh C, Sapper E, Wang K, Roedel J (2012) Giant electric-field-induced strains in lead-free ceramics for actuator applications—status and perspective. J Electroceram 29(1):71–93CrossRefGoogle Scholar
  40. 40.
    Carl K, Hardtl KH (1978) Electrical after-effects in Pb(Ti, Zr)O3 ceramics. Ferroelectrics 17(3–4):473–486Google Scholar
  41. 41.
    Shrout TR, Zhang SJ (2007) Lead-free piezoelectric ceramics: alternatives for PZT? J Electroceram 19(1):113–126CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2017

Authors and Affiliations

  • Alicia Manjón-Sanz
    • 1
  • Caitlin Berger
    • 1
  • Michelle R. Dolgos
    • 1
  1. 1.Department of ChemistryOregon State UniversityCorvallisUSA

Personalised recommendations