Skip to main content

Advertisement

Log in

Preparation and application of poly(zwitterionic ionic liquid) to enhance the photocatalytic activity of TiO2

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

A novel composite material PIL@TiO2 was synthesized by sol–gel method using zwitterionic ionic liquid (1-(3-sulfonic group) propyl-3-ethylimidazole). TiO2 was uniformly loaded on PIL (poly(1-(3-sulfonic group) propyl-3-ethylimidazole)). The large specific surface area, unique microspore structure, negative effect, and synergistic effect were caused by PIL. PIL@TiO2 can effectively improve the separation efficiency of the electron–hole photogeneration. The electron–hole pair and ·OH play an important role in the photo-degradation. The structure of dye molecule is also an influencing factor for the degradation capacity. After five cycle experiments, PIL@TiO2 still exhibited excellent photocatalytic efficiency to dye molecules and its photocatalytic efficiency is better than that of P-25 (nanoscale TiO2) in the methyl orange and Rhodamine B solutions.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Scheme 2
Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12

Similar content being viewed by others

References

  1. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using image for hydrogen production. Sust Energ Rev 11(3):401–405

    Article  Google Scholar 

  2. Zhang Y, Tang ZR, Fu X, Xu YJ (2010) TiO2–Graphene nanocomposites for gas—phase photocatalytic degradation of volatile aromatic pollutant: is TiO2–graphene truly different from other TiO2–carbon composite materials. ACS Nano 4(12):7303–7314

    Article  Google Scholar 

  3. Palmisano G, Garcia-Lopez E, Marci G, Loddo V, Yurdakal S et al (2010) Advances in selective conversions by heterogeneous photocatalysis. Chem Commun 42(2):7074–7089

    Article  Google Scholar 

  4. Yang Y, Wang GC, Deng Q, Dickon HL, Zhao HJ (2014) Microwave-assisted fabrication of nanoparticulate TiO2 microspheres for synergistic photocatalytic removal of Cr(VI) and methyl orange. ACS Appl Mater Interfaces 6(4):3008–3015

    Article  Google Scholar 

  5. Wang SB, Pan L, Song JJ, Mi WB, Zou JJ, Wang L, Zhang XW (2015) Titanium-defected undoped anatase TiO2 with p-type conductivity, room-temperature ferromagnetism, and remarkable photocatalytic performance. J Am Chem Soc 137(8):2975–2983

    Article  Google Scholar 

  6. Lira E, Wendt S, Hu P, Hanse JO (2011) The importance of bulk Ti3+ defects in the oxygen chemistry on titania surfaces. J Am Chem Soc 133(133):6529–6532

    Article  Google Scholar 

  7. Zuo F, Bozhilov K, Dillon RJ, Wang L, Smith P, Zhao X, Bardeen C, Feng P (2012) Active facets on titanium(III)-doped TiO2: an effective strategy to improve the visible-light photocatalytic activity. Angew Chem Int Ed 51(25):6223–6226

    Article  Google Scholar 

  8. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238(5358):37–38

    Article  Google Scholar 

  9. Ren L, Li YZ, Hou JT, Zhao XJ, Pan CX (2014) Preparation and enhanced photocatalytic activity of TiO2 nanocrystals with internal pores. ACS Appl Mater Interfaces 6(3):1608–1615

    Article  Google Scholar 

  10. Chen F, Zou W, Qu W, Zhang J (2009) Photocatalytic performance of a visible light TiO2 photocatalyst prepared by a surface chemical modification process. Catal Commun 10(11):1510–1513

    Article  Google Scholar 

  11. Kuo YL, Su TL, Kung FC, Wu TJ (2011) Study of parameter setting and characterization of visible-light driven nitrogen-modified commercial titanium oxide photocatalysts. J Hazard Mater 190(1–3):938–944

    Article  Google Scholar 

  12. Li FT, Zhao Y, Hao YJ, Wang XJ, Liu RH, Zhao DS, Chen DM (2012) N-doped P25 TiO2-amorphous Al2O3 composites: one-step solution combustion preparation and enhanced visible-light photocatalytic activity. J Hazard Mater 239–240(18):118–127

    Article  Google Scholar 

  13. Ananpattarachai J, Kajitvichyanukul P, Seraphin S (2009) Visible light absorption ability and photocatalytic oxidation activity of various interstitial N-doped TiO2 prepared from different nitrogen dopants. J Hazard Mater 168(1):253–261

    Article  Google Scholar 

  14. Wu M, Jin J, Liu J, Deng Z, Li Y, Depairs SB (2013) High photocatalytic activity enhancement of titania inverse opal films by slow photon effect induced strong light absorption. J Mater Chem A 1(38):15491–15500

    Article  Google Scholar 

  15. Wang JS, Li H, Li HY, Zou C, Wang H, Li DS (2014) Mesoporous TiO2 thin films exhibiting enhanced thermal stability and controllable pore size: preparation and photocatalyzed destruction of cationic dyes. ACS Appl Mater Interfaces 6(3):1623–1631

    Article  Google Scholar 

  16. Zhou XJ, Zhou YY, Nie JJ, Ji ZC, Xu JT, Zhang XH, Du BY (2014) Thermosensitive ionic microgels via surfactant-free emulsion copolymerization and in situ quaternization cross-linking. ACS Appl Mater Interfaces 6(6):4498–4513

    Article  Google Scholar 

  17. Swain CG, Ohno A, RoeDK Maugh R (1967) Tetrahexylammonium benzoate, a liquid salt at 25°, a solvent for kinetics or electrochemistry. J Am Chem Soc 89(11):2648–2649

    Article  Google Scholar 

  18. Nagaraju G, Manjunath K, Ravishankar TN, Ravikumar BS, Nagabhushan H, Ebeling G, Dupont J (2013) Ionic liquid-assisted hydrothermal synthesis of TiO2 nanoparticles and its application in photocatalysis. J Mater Sci 48:8420–8426. doi:10.1007/s10853-013-7654-5

    Article  Google Scholar 

  19. Zhang X, Zhang L, Li Y, Di L (2015) Atmospheric-pressure cold plasma for fabrication of anatase–rutile mixed TiO2 with the assistance of ionic liquid. Catal Today 256:215–220

    Article  Google Scholar 

  20. Shahi SK, Kaur N, Kaur A, Singh V (2015) Green synthesis of photoactive nanocrystalline anatase TiO2 in recyclable and recoverable acidic ionic liquid [Bmim] HSO4. J Mater Sci 50:2443–2450. doi:10.1007/s10853-014-8799-6.

    Article  Google Scholar 

  21. Choi BR, Park SJ, Kim S (2015) Preparation of polyethylene oxide composite electrolytes containing imidazolium cation salt-attached titanium oxides and their conducing behavior. J Ind Eng Chem 31:352–359

    Article  Google Scholar 

  22. Gindri IM, Siddiqui DA, Frizzo CP, Martins MAP, Rodrigues DC (2015) Ionic liquid coatings for titanium surfaces: effect of IL structure on coating profile. ACS Appl Mater Interfaces 7:27421–27431

    Article  Google Scholar 

  23. Rutkowska IA, Marszalek M, Orlowska J, Ozimek W, Zakeeruddin SM, Kulesza PJ, Grätzel M (2015) Nanocomposite semi-solid redox ionic liquid electrolytes with enhanced charge-transport capabilities for dye-sensitized solar cells. ChemSusChem 8:2560–2568

    Article  Google Scholar 

  24. Zhang Y, Zhao L, Patra PK, Hu D, Ying JY (2009) Colloidal poly-imidazolium salts and derivatives. Nano Today 4(1):13–20

    Article  Google Scholar 

  25. Yuan J, Mecerreyes D, Antonietti M (2013) Poly(ionic liquid)s: An update. Prog Polym Sci 38(7):1009–1036

    Article  Google Scholar 

  26. Wu G, Jiang Y, Xu D, Tang H, Liang X, Li G (2010) Thermoresponsive inverse opal films fabricated with liquid–crystal elastomers and nematic liquid crystals. Langmuir 27(4):1505–1509

    Article  Google Scholar 

  27. Zeng M, Li YZ, Mao MY, Bai JL, Ren L, Zhao XJ (2015) Synergetic effect between photocatalysis on TiO2 and thermocatalysis on CeO2 for gas-phase oxidation of benzene on TiO2/CeO2 nanocomposites. ACS Catal 5(6):3278–3286

    Article  Google Scholar 

  28. Cheng Q, Sui J, Cai W (2012) Enhanced upconversion emission in Yb3+ and Er3+ codoped NaGdF4 nanocrystals by introducing Li+ ions. Nanoscale 4(3):779–784

    Article  Google Scholar 

  29. Martí I, Burguete MI, Philip AG, Santiago V (2015) Acyclic pseudopeptidic hosts as molecular receptors and transporters for anions. Eur J Org Chem 2105(23):5150–5158

    Article  Google Scholar 

  30. Huth F, Govyadinov A, Amarie S, Nuansing W, Keliman F, Hillenbrand R (2012) Nano-FTIR absorption spectroscopy of molecular fingerprints at 20 nm spatial resolution. Nano Lett 12(8):3973–3978

    Article  Google Scholar 

  31. Zhang Y, Yamamoto JP, Yamada DC, Iwata T, Hitomi K, Todo T et al (2011) Substrate assignment of the (6–4) photolyase reaction by FTIR spectroscopy. J Phys Chem Lett 2(21):2774–2777

    Article  Google Scholar 

  32. Sordello FG, Zeb G, Hu K, Calza P, Minero C, Szkopek T, Cerruti M (2014) Tuning TiO2 nanoparticle morphology in graphene–TiO2 hybrids by graphene surface modification. Nanoscale 6(12):6710–6719

    Article  Google Scholar 

  33. Cruz DS, Green MD, Ye Y, Elabd YA, Long TE, Winey KL (2012) Correlating backbone-to-backbone distance to ionic conductivity in amorphous polymerized ionic liquids. J Polym Sci Polym Phys 50(5):338–346

    Article  Google Scholar 

  34. Jeong HK, Lee YP, Lahaye RJ, Park MH et al (2008) Evidence of graphitic AB stacking order of graphite oxides. J Am Chem Soc 130(4):1362–1366

    Article  Google Scholar 

  35. Bell NJ, Ng YH, Du A, Coster H, Smith SC, Amal R (2011) Understanding the enhancement in photoelectrochemical properties of photocatalytically prepared TiO2-reduced graphene oxide composite. J Phys Chem C 115(13):6004–6009

    Article  Google Scholar 

  36. Su C, Lin KF, Lin YH, You BH (2006) Preparation and characterization of high-surface-area titanium dioxide by sol–gel process. J Porous Mater 13(3):251–258

    Article  Google Scholar 

  37. Deepak TG, Subash D, Anjusree GS, Pai KPN, Nair SV, Nair AS (2014) Photovoltaic property of anatase TiO2 3-D mesoflowers. ACS Sustain Chem Eng 2(12):2772–2780

    Article  Google Scholar 

  38. Fatma K, Sesha V, Cagla OA, Inci D, Necmi B, Tamer U (2015) Transformation of polymer–ZnO core-shell nanofibers into ZnO hollow nanofibers: Intrinsic defect reorganization in ZnO and its influence on the photocatalysis. Appl Catal B Environ 176–177:646–653

    Google Scholar 

  39. Xu YJ, Zhang Y, Fu X (2010) New insight for enhanced photocatalytic activity of TiO2 by doping carbon nanotubes: a case study on degradation of b and methyl orange. J Phys Chem C 114(6):2669–2676

    Article  Google Scholar 

  40. Gorokh YA, Aksenova NA, Solov’eva AB et al (2011) The influence of amphiphilic polymers on the photocatalytic activity of water-soluble porphyrin photosensitizers. J Phys Chem A 85(5):871–875

    Google Scholar 

  41. Lee H, Paik DH, Jeong KY, Gang RH, Lee JH, Choi SW (2015) Fabrication of poly(methyl methacrylate) and TiO2 composite microspheres with controlled morphologies and porous structures by electrospraying. J Mater Sci 50(19):6531–6538. doi:10.1007/s10853-015-9216-5

    Article  Google Scholar 

  42. Kerkez-Kuyumcu Ö, Kibar E, Dayıoğlu K, Gedik F, Akın AN, Özkara-Aydınoğlu S (2015) A comparative study for removal of different dyes over M/TiO2 (M = Cu, Ni Co, Fe, Mn and Cr) photocatalysts under visible light irradiation. J Photochem Photobiol A-Chem 311:176–185

    Article  Google Scholar 

  43. Khataee AR, Kasiri MB (2010) Photocatalytic degradation of organic dyes in the presence of nanostructured titanium dioxide: Influence of the chemical structure of dyes. J Mol Catal A-Chem 328(1–2):8–26

    Article  Google Scholar 

  44. Papadam T, Xekoukoulotakis NP, Poulios I, Mantzavinos D (2007) Photocatalytic transformation of acid orange 20 and Cr(VI) in aqueous TiO2 suspensions. J Photochem Photobiol A Chem 186(2–3):308–315

    Article  Google Scholar 

  45. Zhang N, Liu SQ, Fu XZ, Xu YJ (2011) Synthesis of M@TiO2 (M = Au, Pd, Pt) core-shell nanocomposites with tunable photoreactivity. J Phys Chem C 115(18):9136–9145

    Article  Google Scholar 

  46. Duan XW, Wang GZ, Wang HQ, Wang YQ, Shen C, Cai WP (2010) Orientable pore-size-distribution of ZnO nanostructures and their superior photocatalytic activity. Cryst Eng Commun 12(10):2821–2825

    Article  Google Scholar 

  47. Qiu BC, Zhou Y, Ma YF, Yang XL, Sheng WQ, Xing MY, Zhang JL (2015) Facile synthesis of the Ti3+ self-doped TiO2–graphene nanosheet composites with enhanced photocatalysis. Sci Rep 859:1–6

    Google Scholar 

  48. Ohsaki H, Kanai N, Fukunaga Y, Suzuki M, Watanabe T et al (2006) Photocatalytic properties of SnO2/TiO2 multilayers. Thin Solid Films 502:138–142

    Article  Google Scholar 

  49. Ji YJ, Lin KH, Zheng HG (2010) Solar-light photoamperometric and photocatalytic properties of quasi-transparent TiO2 nanoporous thin films. ACS Appl Mater Interaces 2(11):3075–3082

    Article  Google Scholar 

  50. Tachikawa T, Fujitsuka M, Majima T (2007) Mechanistic insight into the TiO2 photocatalytic reactions: design of new photocatalysts. J Phys Chem C 111(14):5259–6275

    Article  Google Scholar 

  51. Luo L, Li YZ, Hou HT, Yang Y (2014) Visible photocatalysis and photostability of Ag3PO4 photocatalyst. Appl Surf Sci 319(1):328–332

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Applied Basic Research Programs of Science and Technology Department of Sichuan Province, China (2015JY0042), the Key Fund Project of Education Department of Sichuan Province, China (15ZA0147), and the Fundamental Research Funds of China West Normal University, China (14E015).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Hejun Gao or Yunwen Liao.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, L., Du, J., Ran, T. et al. Preparation and application of poly(zwitterionic ionic liquid) to enhance the photocatalytic activity of TiO2 . J Mater Sci 51, 7186–7198 (2016). https://doi.org/10.1007/s10853-016-9999-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9999-z

Keywords

Navigation