Skip to main content
Log in

Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

The temperature dependence of grain boundary mobility is complex, varied, and rarely fits ideal Arrhenius behavior. This work presents a series of case studies of planar grain boundaries in a model FCC system that were previously demonstrated to exhibit a variety of temperature-dependent mobility behaviors. It is demonstrated that characterization of the mobility versus temperature plots is not sufficient to predict the atomic motion mechanism of the grain boundaries. Herein, the temperature-dependent motion and atomistic motion mechanisms of planar grain boundaries are driven by a synthetic, orientation-dependent, driving force. The systems studied include CSL boundaries with \(\Sigma \) values of 5, 7, and 15, including both symmetric and asymmetric boundaries. These boundaries represent a range of temperature-dependent trends including thermally activated, antithermal, and roughening behaviors. Examining the atomic-level motion mechanisms of the thermally activated boundaries reveals that each involves a complex shuffle, and at least one atom that changes the plane it resides on. The motion mechanism of the antithermal boundary is qualitatively different and involves an in-plane coordinated shuffle that rotates atoms about a fixed atom lying on a point in the coincident site lattice. This provides a mechanistic reason for the observed high mobility, even at low temperatures, which is due to the low activation energy needed for such motion. However, it will be demonstrated that this mechanism is not universal, or even common, to other boundaries exhibiting non-thermally activated motion. This work concludes that no single atomic motion mechanism is sufficient to explain the existence of non-thermally activated boundary motion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11
Figure 12
Figure 13

Similar content being viewed by others

Notes

  1. The boundaries A, B, and C refer to boundaries with PubID #15, #220, and #348, respectively, as described in the supplementary material of Ref. [27].

References

  1. Babcock S, Balluffi R (1989) Grain boundary kinetics—I. In situ observations of coupled grain boundary dislocation motion, crystal translation and boundary displacement. Acta Metall 37(9):2357–2365. doi:10.1016/0001-6160(89)90033-3

    Article  Google Scholar 

  2. Babcock S, Balluffi R (1989) Grain boundary kinetics—II. In situ observations of the role of grain boundary dislocations in high-angle boundary migration. Acta Metall 37(9):2367–2376. doi:10.1016/0001-6160(89)90034-5

    Article  Google Scholar 

  3. Bulatov VV, Reed BW, Kumar M (2014) Grain boundary energy function for fcc metals. Acta Mater 65:161–175. doi:10.1016/j.actamat.2013.10.057

    Article  Google Scholar 

  4. Cantwell PR, Holm EA, Harmer MP, Hoffmann MP (2015) Anti-thermal behavior of materials. Scripta Mater 103:1–5. doi:10.1016/j.scriptamat.2015.02.011

    Article  Google Scholar 

  5. Christian JW (1994) Crystallographic theories, interface structures, and transformation mechanisms. Metall Mater Trans A 25(9):1821–1839. doi:10.1007/BF02649031

    Article  Google Scholar 

  6. Coleman SP, Spearot DE, Foiles SM (2014) The effect of synthetic driving force on the atomic mechanisms associated with grain boundary motion below the interface roughening temperature. Comput Mater Sci 86:38–42. doi:10.1016/j.commatsci.2014.01.022

    Article  Google Scholar 

  7. Deng C, Schuh CA (2011) Atomistic simulation of slow grain boundary motion. Phys Rev Lett 106(4):045–503. doi:10.1103/PhysRevLett.106.045503

    Article  Google Scholar 

  8. Foiles SM, Hoyt JJ (2006) Computation of grain boundary stiffness and mobility from boundary fluctuations. Acta Mater 54(12):3351–3357. doi:10.1016/j.actamat.2006.03.037

    Article  Google Scholar 

  9. Gottstein G, Shvindlerman LS (2010) Grain boundary migration in metals, 2nd edn. CRC Press, Boca Raton

    Google Scholar 

  10. Hirth JP, Pond RC, Lothe J (2006) Disconnections in tilt walls. Acta Mater 54(16):4237–4245. doi:10.1016/j.actamat.2006.05.017

    Article  Google Scholar 

  11. Holm EA, Miodownik MA, Rollett AD (2003) On abnormal subgrain growth and the origin of recrystallization nuclei. Acta Mater 51(9):2701–2716. doi:10.1016/S1359-6454(03)00079-X

    Article  Google Scholar 

  12. Homer ER, Holm EA, Foiles SM, Olmsted DL (2014) Trends in grain boundary mobility: survey of motion mechanisms. JOM 66(1):114–120. doi:10.1007/s11837-013-0801-2

    Article  Google Scholar 

  13. Homer ER, Patala S, Priedeman JL (2015) Grain boundary plane orientation fundamental zones and structure-property relationships. Sci Rep 5:15–476. doi:10.1038/srep15476

    Article  Google Scholar 

  14. Hoyt JJ (2014) Atomistic simulations of grain and interphase boundary mobility. Model Simul Mater Sci Eng 22:001–033. doi:10.1088/0965-0393/22/3/033001

    Article  Google Scholar 

  15. Janssens KGF, Olmsted D, Holm EA, Foiles SM, Plimpton SJ, Derlet PM (2006) Computing the mobility of grain boundaries. Nat Mater 5(2):124–127. doi:10.1038/nmat1559

    Article  Google Scholar 

  16. Jhan RJ, Bristowe P (1990) A molecular dynamics study of grain boundary migration without the participation of secondary grain boundary dislocations. Scr Metall Mater 24(7):1313–1318. doi:10.1016/0956-716X(90)90348-K

    Article  Google Scholar 

  17. Jung SH, Yoon DY, Kang SJL (2013) Mechanism of abnormal grain growth in ultrafine-grained nickel. Acta Mater 61(15):5685–5693. doi:10.1016/j.actamat.2013.06.010

    Article  Google Scholar 

  18. Kelchner CL, Plimpton SJ, Hamilton JC (1998) Dislocation nucleation and defect structure during surface indentation. Phys Rev B Condens Matter Mater Phys 58(17):11085–11088. doi:10.1103/PhysRevB.58.11085

    Article  Google Scholar 

  19. Lobkovsky AE, Karma A, Mendelev MI, Haataja M, Srolovitz DJ (2004) Grain shape, grain boundary mobility and the Herring relation. Acta Mater 52(2):285–292. doi:10.1016/j.actamat.2003.09.012

    Article  Google Scholar 

  20. Mendelev MI, Deng C, Schuh CA, Srolovitz DJ (2013) Comparison of molecular dynamics simulation methods for the study of grain boundary migration. Modell Simul Mater Sci Eng 21(4):017–045. doi:10.1088/0965-0393/21/4/045017

    Article  Google Scholar 

  21. Merkle KL, Thompson LJ (2001) Atomic-scale observation of grain boundary motion. Mater Lett 48:188–193. doi:10.1016/S0167-577X(00)00301-3

    Article  Google Scholar 

  22. Molodov D, Czubayko U, Gottstein G, Shvindlerman L (1995) Mobility of \(\langle 111 \rangle \) tilt grain boundaries in the vicinity of the special misorientation \(\Sigma = 7\) in bicrystals of pure aluminium. Scr Metall Mater 32(4):529–534. doi:10.1016/0956-716X(95)90832-5

    Article  Google Scholar 

  23. Molodov DA, Czubayko U, Gottstein G, Shvindlerman LS (1997) Abnormal kinetic properties of grain boundaries in Al doped with Pb: grain boundary motion and thermal extraction of Pb. In: Mehrer H, Herzig C, Stolwijk NA, Bracht H (eds) Defect and diffusion forum, vol 143–147. Trans Tech, Switzerland, pp 1493–1498. doi:10.4028/www.scientific.net/DDF.143-147

    Google Scholar 

  24. Molodov DA, Gorkaya T, Gottstein G (2011) Migration of the \(\Sigma 7\) tilt grain boundary in Al under an applied external stress. Scr Mater 65(11):990–993. doi:10.1016/j.scriptamat.2011.08.030

    Article  Google Scholar 

  25. Olmsted DL, Foiles SM, Holm EA (2007) Grain boundary interface roughening transition and its effect on grain boundary mobility for non-faceting boundaries. Scr Mater 57(12):1161–1164. doi:10.1016/j.scriptamat.2007.07.045

    Article  Google Scholar 

  26. Olmsted DL, Foiles SM, Holm EA (2009) Survey of computed grain boundary properties in face-centered cubic metals: I. Grain boundary energy. Acta Mater 57(13):3694–3703. doi:10.1016/j.actamat.2009.04.007

    Article  Google Scholar 

  27. Olmsted DL, Holm EA, Foiles SM (2009) Survey of computed grain boundary properties in face-centered cubic metals—II: Grain boundary mobility. Acta Mater 57(13):3704–3713. doi:10.1016/j.actamat.2009.04.015

    Article  Google Scholar 

  28. Phillpot SR, Wolf D, Gleiter H (1995) A structural model for grain boundaries in nanocrystalline materials. Scr Metall Mater 33(8):1245–1251. doi:10.1016/0956-716X(95)00350-5

    Article  Google Scholar 

  29. Plimpton S (1995) Fast parallel algorithms for short-range molecular dynamics. J Comput Phys 117(1):1–19. doi:10.1006/jcph.1995.1039

    Article  Google Scholar 

  30. Pond RC, Celotto S (2003) Special interfaces: military transformations. Int Mater Rev 48(4):225–245. doi:10.1179/095066003225010245

    Article  Google Scholar 

  31. Race CP, von Pezold J, Neugebauer J (2014) Role of the mesoscale in migration kinetics of flat grain boundaries. Phys Rev B 89(21):214110. doi:10.1103/PhysRevB.89.214110

    Article  Google Scholar 

  32. Ratanaphan S, Olmsted DL, Bulatov VV, Holm EA, Rollett AD, Rohrer GS (2015) Grain boundary energies in body-centered cubic metals. Acta Mater 88:346–354. doi:10.1016/j.actamat.2015.01.069

    Article  Google Scholar 

  33. Sansoz F, Dupont V (2006) Grain growth behavior at absolute zero during nanocrystalline metal indentation. Appl Phys Lett 89:11901. doi:10.1063/1.2352725

    Article  Google Scholar 

  34. Schönfelder B, Wolf D, Phillpot SR, Furtkamp M (1997) Molecular-dynamics method for the simulation of grain-boundary migration. Interface Sci 5(4):245–262. doi:10.1023/A:1008663804495

    Article  Google Scholar 

  35. Straumal B, Baretzky B (2004) Grain boundary phase transitions and their influence on properties of polycrystals. Interface Sci 12(2–3):147–155. doi:10.1023/B:INTS.0000028645.30358.f5

    Article  Google Scholar 

  36. Straumal BB, Rabkin E, Sursaeva VG, Goruakova AS (2005) Faceting and migration of twin grain boundaries in zinc. Zeitschrift für Metallkunde 96(2):161–166. doi:10.3139/146.101014

    Article  Google Scholar 

  37. Straumal BB, Sursaeva VG, Gornakova AS (2005) Influence of faceting-roughening on triple-junction migration in zinc. Zeitschrift für Metall 96(10):1147–1151. doi:10.3139/146.101154

    Article  Google Scholar 

  38. Stukowski A (2009) Visualization and analysis of atomistic simulation data with OVITO–the open visualization tool. Modell Simul Mater Sci Eng 18(1):015012. doi:10.1088/0965-0393/18/1/015012

    Article  Google Scholar 

  39. Sursaeva VG, Gornakova AS, Yashnikov VP, Straumal BB (2008) Motion of the faceted 57\(^\circ \) \([11\ \overline{2}\ 0]\) tilt grain boundary in zinc. J Mater Sci 43(11):3860–3866. doi:10.1007/s10853-007-2223-4

    Article  Google Scholar 

  40. Sutton AP, Balluffi RW (1995) Interfaces in crystalline materials. Oxford University Press, New York

    Google Scholar 

  41. Sutton AP, Vitek V (1983) On the structure of tilt grain boundaries in cubic metals I. Symmetrical tilt boundaries. Philos Trans R Soc A: Math Phys Eng Sci 309(1506):1–36. doi:10.1098/rsta.1983.0020

    Article  Google Scholar 

  42. Sutton AP, Vitek V (1983) On the structure of tilt grain boundaries in cubic metals II. Asymmetrical tilt boundaries. Philos Trans R Soc A: Math Phys Eng Sci 309(1506):37–54. doi:10.1098/rsta.1983.0021

    Article  Google Scholar 

  43. Sutton AP, Vitek V (1983) On the structure of tilt grain boundaries in cubic metals. III. Generalizations of the structural study and implications for the properties of grain boundaries. Philos Trans R Soc A: Math Phys Eng Sci 309(1506):55–68. doi:10.1098/rsta.1983.0022

    Article  Google Scholar 

  44. Truhlar DG, Kohen A (2001) Convex Arrhenius plots and their interpretation. Proc Natl Acad Sci 98(3):848–851. doi:10.1073/pnas.98.3.848

    Article  Google Scholar 

  45. Tucker GJ, Zimmerman JA, McDowell DL (2011) Continuum metrics for deformation and microrotation from atomistic simulations: application to grain boundaries. Int J Eng Sci 49(12):1424–1434. doi:10.1016/j.ijengsci.2011.03.019

    Article  Google Scholar 

  46. Tucker GJ, Tiwari S, Zimmerman JA, McDowell DL (2012) Investigating the deformation of nanocrystalline copper with microscale kinematic metrics and molecular dynamics. J Mech Phys Solids 60(3):471–486. doi:10.1016/j.jmps.2011.11.007

    Article  Google Scholar 

  47. Ulomek F, Mohles V (2016) Separating grain boundary migration mechanisms in molecular dynamics simulations. Acta Mater 103:424–432. doi:10.1016/j.actamat.2015.10.021

    Article  Google Scholar 

  48. Ulomek F, O’Brien CJ, Foiles SM, Mohles V (2015) Energy conserving orientational force for determining grain boundary mobility. Modell Simul Mater Sci Eng 23:025007. doi:10.1088/0965-0393/23/2/025007

    Article  Google Scholar 

  49. Winning M, Gottstein G, Shvindlerman L (2002) On the mechanisms of grain boundary migration. Acta Mater 50:353–363. doi:10.1016/S1359-6454(01)00343-3

    Article  Google Scholar 

  50. Wolf D (2001) High-temperature structure and properties of grain boundaries: long-range vs. short-range structural effects. Curr Opin Solid State Mater Sci 5:435–443. doi:10.1016/S1359-0286(01)00024-9

    Article  Google Scholar 

  51. Yoon DY, Cho YK (2005) Roughening transition of grain boundaries in metals and oxides. J Mater Sci 40(4):861–870. doi:10.1007/S10853-005-6502-7

    Article  Google Scholar 

  52. Zhang H, Mendelev MI, Srolovitz DJ (2004) Computer simulation of the elastically driven migration of a flat grain boundary. Acta Mater 52(9):2569–2576. doi:10.1016/j.actamat.2004.02.005

    Article  Google Scholar 

  53. Zhang H, Srolovitz DJ, Douglas JF, Warren JA (2009) Grain boundaries exhibit the dynamics of glass-forming liquids. Proc Natl Acad Sci USA 106(19):7735–7740. doi:10.1073/pnas.0900227106

    Article  Google Scholar 

  54. Zhang K, Weertman JR, Eastman JA (2005) Rapid stress-driven grain coarsening in nanocrystalline Cu at ambient and cryogenic temperatures. Appl Phys Lett 87(6):061921. doi:10.1063/1.2008377

    Article  Google Scholar 

  55. Zimmerman JA, Kelchner CL, Klein PA, Hamilton JC, Foiles SM (2001) Surface step effects on nanoindentation. Phys Rev Lett 87(16):165507. doi:10.1103/PhysRevLett.87.165507

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank D.C. Bufford, T.A. Furnish, F. Abdeljawad, B.L. Boyce, and K. Hattar for their time in reviewing and providing insightful comments on the manuscript making it clearer and more applicable to a wider audience. The work was fully supported by the U.S. Department of Energy, Office of Science, Materials Sciences and Engineering Division, under FWP Award #15013170. Work was performed at Sandia National Laboratories, a multi-program laboratory managed and operated by Sandia Corporation, a wholly owned subsidiary of Lockheed Martin Corporation, for the U.S. Department of Energy’s National Nuclear Security Administration under Contract DE-AC04-94AL85000.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. J. O’Brien.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

10853_2016_9944_MOESM1_ESM.mp4

The animation contained in ESM_1.mp4 is separated into four panes illustrating boundary motion with various metrics. The animation is of B; a \(\Sigma 7\) \((12\,3\,1)/(9\,8\,3)\) boundary that exhibits antithermal motion. The uppermost frame shows a perspective view of the entire system illustrating the rate and direction of boundary motion and is colored by the CentroSymmetry Parameter (CSP) [18]. The CSP coloring illustrates the deviation from the perfect FCC structure of the regions surrounding an atom, a non-zero value indicates that the immediate neighborhood of an atom is plastically deformed. The second pane again shows the CSP but only including the atoms lying in a close-packed plane common to both crystals. The next pane shows the propagation of the grain boundary along a close-packed plane colored by microrotation [45]. This metric colors atoms only by the rotation of their immediate environment. This pane contains the same information as Fig. 9, but oriented identically to the other panes in the animation. The bottom pane reproduces Fig. 6 which is colored by magnitude of the slip-vector [55]. The slip-vector is similar to an atom’s Burger’s vector. It measures the deformation between an atom and it neighbors. The slip-vector is additive so that it retains information regarding the deformation history of the atom. Supplementary material 1 (MP4 20018 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

O’Brien, C.J., Foiles, S.M. Exploration of the mechanisms of temperature-dependent grain boundary mobility: search for the common origin of ultrafast grain boundary motion. J Mater Sci 51, 6607–6623 (2016). https://doi.org/10.1007/s10853-016-9944-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9944-1

Keywords

Navigation