Skip to main content
Log in

Free surface effects on rotational deformation in nanocrystalline materials

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Free surface effects on rotational deformation mediated by grain boundary dislocations in nanocrystalline materials are theoretically described. The critical stresses and characteristic geometric parameters for the rotational deformation occurring in nanocrystalline materials near their free surfaces are calculated and compared with those specifying the rotational deformation in bulk regions. The role of the free surface effects in the interpretation of electron microscopy data for plastically deformed nanocrystalline materials is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5

Similar content being viewed by others

References

  1. Koch CC (2007) Structural nanocrystalline materials: an overview. J Mater Sci 42:1403–1414. doi:10.1007/s10853-006-0609-3

    Article  Google Scholar 

  2. Kawasaki M, Langdon TG (2007) Principles of superplasticity in ultrafine-grained materials. J Mater Sci 42:1782–1796. doi:10.1007/s10853-006-0954-2

    Article  Google Scholar 

  3. Ovid’ko IA (2007) Review on the fracture processes in nanocrystalline materials. J Mater Sci 42:1694–1708. doi:10.1007/s10853-006-0968-9

    Article  Google Scholar 

  4. Dao M, Lu L, Asaro RJ, De Hosson JTM, Ma E (2007) Toward a quantitative understanding of mechanical behavior of nanocrystalline materials. Acta Mater 55:4041–4065

    Article  Google Scholar 

  5. Greer JR, De Hosson JTM (2011) Plasticity in small-sized metallic systems: intrinsic versus extrinsic size effect. Prog Mater Sci 56:654–724

    Article  Google Scholar 

  6. Zhu YT, Liao XZ, Wu X-L (2012) Deformation twinning in nanocrystalline materials. Prog Mater Sci 57:1–62

    Article  Google Scholar 

  7. Valiev RZ, Sabirov I, Zhilyaev AP, Langdon TG (2012) Bulk nanostructured metals for innovative applications. JOM 64:1134–1142

    Article  Google Scholar 

  8. Ovid’ko IA (2015) Mechanics of fracturing in nanoceramics. Phil Trans R Soc A 373:20140129

    Article  Google Scholar 

  9. Kawasaki M (2014) Different models of hardness evolution in ultrafine-grained materials processed by high-pressure torsion. J Mater Sci 49:18–34. doi:10.1007/s10853-013-7687-9

    Article  Google Scholar 

  10. Chan T, Zhou Y, Brooks I, Palumbo G, Erb U (2014) Localized strain and heat generation during plastic deformation in nanocrystalline Ni and Ni–Fe. J Mater Sci 49:3847–3859. doi:10.1007/s10853-014-8099-1

    Article  Google Scholar 

  11. Landgon TG, Zhilyaev AP (2014) Long-term self-annealing of copper and aluminium processed by high-pressure torsion. J Mater Sci 49:6529–6535. doi:10.1007/s10853-014-8208-1

    Article  Google Scholar 

  12. Ovid’ko IA, Sheinerman AG (2015) Effects of incoherent nanoinclusions on stress-driven migration of low-angle grain boundaries in nanocomposites. J Mater Sci 50:4430–4439. doi:10.1007/s10853-015-9011-3

    Article  Google Scholar 

  13. Karavaeva MV, Kiseleva SK, Ganeev AV, Protasova EO, Ganiev MM, Simonova LA, Valiev RZ (2015) Superior strength of carbon steel with an ultrafine-grained microstructure and its enhanced thermal stability. J Mater Sci 50:6730–6738. doi:10.1007/s10853-015-9227-2

    Article  Google Scholar 

  14. Yuan F, Wu X (2015) Size effect and atomistic deformation mechanisms of hierarchically nanotwinned fcc metals under nanoindentation. J Mater Sci 50:7557–7567. doi:10.1007/s10853-015-9310-8

    Article  Google Scholar 

  15. Ke M, Milligan WW, Hackney SA, Carsley JE, Aifantis EC (1995) Observation and measurement of grain rotation and plastic strain in nanostructured metal thin films. Nanostruct Mater 5:689–697

    Article  Google Scholar 

  16. Ovid’ko IA (2002) Deformation of nanostructures. Science 295:2386

    Article  Google Scholar 

  17. Murayama M, Howe JM, Hidaka H, Takaki S (2002) Atomic-Level observation of disclination dipoles in mechanically milled, nanocrystalline Fe. Science 295:2433–2435

    Article  Google Scholar 

  18. Shan Z, Stach EA, Wiezorek JMK, Knapp JA, Follstaedt DM, Mao SX (2004) Grain boundary-mediated plasticity in nanocrystalline nickel. Science 305:654–657

    Article  Google Scholar 

  19. Gutkin MY, Ovid’ko IA (2004) Plastic deformation in nanocrystalline materials. Springer, Berlin

    Book  Google Scholar 

  20. Zizak I, Darowski N, Klaumunzer S, Schumacher G, Gerlach JW, Assmann W (2008) Ion-beam-induced collective rotation of nanocrystals. Phys Rev Lett 101:065503

    Article  Google Scholar 

  21. Ovid’ko IA, Sheinerman AG (2008) Special rotational deformation in nanocrystalline metals and ceramics. Scr Mater 59:119–122

    Article  Google Scholar 

  22. Cheng S, Zhao Y, Wang Y, Li Y, Wang X-L, Liaw PK, Lavernia EJ (2010) Structure modulation driven by cyclic deformation in nanocrystalline NiFe. Phys Rev Lett 104:255501

    Article  Google Scholar 

  23. Liu P, Mao SC, Wang LH, Han XD, Zhang Z (2011) Direct dynamic atomic mechanisms of strain-induced grain rotation in nanocrystalline, textured, columnar-structured thin gold films. Scr Mater 64:343–346

    Article  Google Scholar 

  24. Wang L, Teng J, Liu P, Hirata A, Ma E, Zhang Z, Chen M, Han X (2014) Grain rotation mediated by grain boundary dislocations in nanocrystalline platinum. Nat Commun 5:4402

    Google Scholar 

  25. Han X, Wang L, Yue Y, Zhang Z (2015) In situ atomic scale mechanical microscopy discovering the atomistic mechanisms of plasticity in nano-single crystals and grain rotation in polycrystalline metals. Ultramicroscopy 151:94–100

    Article  Google Scholar 

  26. Jang D, Greer JR (2011) Size-induced weakening and grain boundary-assisted deformation in 60 nm grained Ni nanopillars. Scr Mater 64:77–80

    Article  Google Scholar 

  27. Bobylev SV, Ovid’ko IA (2012) Grain boundary rotations in solids. Phys Rev Lett 109:175501

    Article  Google Scholar 

  28. Wouters O, Vellinga WP, Van Tijum R, de Hosson JTM (2005) On the evolution of surface roughness during deformation of polycrystalline aluminum alloys. Acta Mater 53:4043–4050

    Article  Google Scholar 

  29. Wouters O, Vellinga WP, Van Tijum R, de Hosson JTM (2006) Effects of crystal structure and grain orientation on the roughness of deformed polycrystalline metals. Acta Mater 54:2813–2821

    Article  Google Scholar 

  30. Romanov AE, Vladimirov VI (1992) Disclinations in crystalline solids. In: Nabarro FRN (ed) Dislocations in solids, vol 9. North Holland, Amsterdam, pp 191–402

    Google Scholar 

  31. Zhou K, Nazarov AA, Wu MS (2007) Competing relaxation mechanisms in a disclinated nanowire: temperature and size effects. Phys Rev Lett 98:035501

    Article  Google Scholar 

  32. Wu MS, Zhou K, Nazarov AA (2007) Crack nucleation at disclinated triple junctions. Phys Rev B 76:134105

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the Russian Science Foundation (Research Project 14-29-00199).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. G. Sheinerman.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ovid’ko, I.A., Sheinerman, A.G. Free surface effects on rotational deformation in nanocrystalline materials. J Mater Sci 51, 6444–6451 (2016). https://doi.org/10.1007/s10853-016-9942-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9942-3

Keywords

Navigation