Skip to main content
Log in

Theoretical investigation on the crystal structures and electron transfer properties of cyanated TTPO and their selenium analogs

  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We designed a series of 5,6,7-trithiapentacene-13-one (TTPO) derivatives (from 1 to 20) by attaching cyano groups (–CN) and by replacing S atoms with Se. The incoherent charge-hopping model combined with the Marcus–Hush electron transfer theory were used to evaluate the charge mobility of the title compounds as potential n-type organic field-effect transistors (OFETs) candidates. Based on the optimized face-to-face dimers, the crystal structures were predicted. The replacement of S with Se can decrease the electron reorganization energy (λ ). The introduction of −CN can decrease the energy levels of both HOMOs and LUMOs, which increases the stability. According to the electronic affinities (EA) and structures of dimers predicted by the DFT method coupled with dispersion corrections (−D), we selected compounds 2, 14, 15, and 19 as initial well-performance OFETs materials and predicted their crystal structures. Based on the optimized crystal structures, the charge (both electron and hole) transport mobilities are estimated. Electron mobilities of 14 and 15 are as high as 2.32 and 2.48 cm2 V−1 s−1, respectively, indicating that 14 and 15 are the promising n-type OFETs materials. What’s more, the predicted crystals show remarkable anisotropic charge mobilities. The maximum electron mobility appears along the direction of face-to-face π-stacking.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Sun Y, Gu WX, Li YZ, Li YQ, Ma FC (2007) Excited state properties of the p- and n-type semiconductors of thiazolothiazole derivative having thiophene and trifluormethylphenyl rings. Comput Mater Sci 39:376–380

    Article  Google Scholar 

  2. Kwok HL (2005) Modeling current transport in organic light-emitting devices (OLEDs). Comput Mater Sci 33:200–205

    Article  Google Scholar 

  3. Chang L, Jacobs IE, Augustine MP, Moulé AJ (2013) Correlating dilute solvent interactions to morphology and OPV device performance. Org Electron 14:2431–2443

    Article  Google Scholar 

  4. Hatakeyama T, Fukuda K, Okumura H (2013) Physical models for SiC and their application to device simulations of SiC insulated-gate bipolar transistors. IEEE Trans Electron Devices 60:613–621

    Article  Google Scholar 

  5. Ueno K (2010) Fabrication of graphene by chemical methods and its application to organic semiconductor devices. J Phys Soc Jpn 53:73–79

    Google Scholar 

  6. Mesta M, Cottaar J, Coehoorn R, Bobbert PA (2014) Study of charge-carrier relaxation in a disordered organic semiconductor by simulating impedance spectroscopy. Appl Phys Lett 104:213301–213304

    Article  Google Scholar 

  7. Lever L, Kelsall R, Bushby R (2005) A band transport model for highly ordered discotic mesophases. J Comput Electron 1–2:101–104

    Article  Google Scholar 

  8. Wang L, Beljonne D (2013) Flexible surface hopping approach to model the crossover from hopping to band-like transport in organic crystals. J Phys Chem Lett 4:1888–1894

    Article  Google Scholar 

  9. Mccall KL, Rutter SR, Bone EL, Forrest ND, Bissett JS, Jones JDE, Simms MJ, Page AJ, Fisher R, Brown BA, Ogier SD (2014) High performance organic transistors using small molecule semiconductors and high permittivity semiconducting polymers. Adv Funct Mater 24:3067–3074

    Article  Google Scholar 

  10. Kintigh JT, Hodgson JL, Singh A, Pramanik C, Larson AM, Zhou L, Briggs JB, Noll BC, Kheirkhahi E, Pohl K, Mcgruer NE, Miller GP (2014) A robust, high-temperature organic semiconductor. J Phys Chem C 118:26955–26963

    Article  Google Scholar 

  11. Kan J, Chen Y, Qi D, Liu Y, Jiang J (2012) High-performance air-stable ambipolar organic field-effect transistor based on tris(phthalocyaninato) europium(III). Adv Mater 24:1755–1758

    Article  Google Scholar 

  12. Hannewald K, Bobbert PA (2004) Anisotropy effects in phonon-assisted charge-carrier transport in organic molecular crystals. Phys Rev B 69:428–433

    Google Scholar 

  13. Pan JH, Chiu HL, Chen L, Wang BC (2006) Theoretical investigations of triphenylamine derivatives as hole transporting materials in OLEDs: correlation of the Hammett parameter of the substituent to ionization potential, and reorganization energy level. Comput Mater Sci 38:105–112

    Article  Google Scholar 

  14. Xiao X, Meng M, Lei H, Liu CY (2014) Electronic coupling and electron transfer between two dimolybdenum units spaced by a biphenylene group. J Phys Chem C 118:8308–8315

    Article  Google Scholar 

  15. Zhang J, Wang C, Long G, Aratani N, Yamada H, Zhang Q (2016) Fusing N-heteroacene analogues into one “kinked” molecule with slipped two-dimensional ladder-like packing. Chem Sci 7:1309–1313

    Article  Google Scholar 

  16. Shuai Z, Wang L, Song C (2012) Theory of charge transport in carbon electronic materials. Springer briefs in molecular science

  17. Irfana A, Al-Sehemia AG, Muhammad S, Chaudhry AR, Al-Assiri MS, Jin R, Kalam A, Shkir M, Asiri AM (2015) In-depth quantum chemical investigation of electro-optical and charge-transport properties of trans-3-(3,4-dimethoxyphenyl)-2-(4-nitrophenyl)prop-2-enenitrile. CR Chimie 18:1289–1296

    Article  Google Scholar 

  18. Irfan A., Al-Sehemi AG, Muhammad S, Chaudhry AR, Kalam A, Shkir M, AL-Salami AE, Asiri AM (2015) The electro-optical and charge transport study of imidazolidin derivative: quantum chemical investigations. J Saudi Chem Soc 136. doi:10.1016/j.jscs.2014.12.009

  19. Irfan A, Chaudhry AR, Al-Sehemi AG, Al-Asiri MS, Muhammad S, Kalam A (2014) Investigating the effect of acene-fusion and trifluoroacetyl substitution on the electronic and charge transport properties by density functional theory. J Saudi Chem Soc. doi:10.1016/j.jscs.2014.09.009

    Google Scholar 

  20. Chaudhry AR, Ahmed R, Irfan A, Shaari A, Al-Sehemi AG (2014) Effects of electron withdrawing groups on transfer integrals, mobility, electronic and photo-physical properties of naphtho[2,1-b:6,5-b]difuran derivatives: a theoretical study. Sci Adv Mater 6:1727–1739

    Article  Google Scholar 

  21. Norton JE, Brédas JL (2008) Polarization energies in oligoacene semiconductor crystals. J Am Chem Soc 130:12377–12384

    Article  Google Scholar 

  22. Robey SW, Ciszek JW, Tour JM (2007) Effects of substitution on reorganization energies in oligo(-phenylene ethynylene) molecular wires. J Phys Chem C 111:17206–17212

    Article  Google Scholar 

  23. Haghighat AE, Binesh SM (2014) Domain decomposition algorithm for coupling of finite element and boundary element methods. Arab J Sci Eng 39:3489–3497

    Article  Google Scholar 

  24. Nithya R, Senthilkumar K (2014) Theoretical studies on charge transport and optical properties of tris(N-saclicylideneanilines). RSC Adv 4:25969–25982

    Article  Google Scholar 

  25. Sundar VC, Zaumseil J, Podzorov V, Menard E, Willett RL, Someya T, Gershenson ME, Rogers JA (2004) Elastomeric transistor stamps: reversible probing of charge transport in organic crystals. Science 303:1644–1646

    Article  Google Scholar 

  26. Wang X, Lau KC (2012) Theoretical investigations on charge-transfer properties of novel high mobility n-channel organic semiconductors-diazapentacene derivatives. J Phys Chem C 116:22749–22758

    Article  Google Scholar 

  27. Li A, Wen SH, Song JL, Deng WQ (2009) Synthesis of cyanated tetracenes as the organic semiconductors. Org Electron 10:1054–1059

    Article  Google Scholar 

  28. Bangal RP (2007) Density functional studies on the effects of hydrogen bonding on the formation of a charge-transfer complex between p-benzoquinone and 2,6-dimethoxyphenol. J Phys Chem A 111:5536–5543

    Article  Google Scholar 

  29. Fokin AA, Chernish LV, Gunchenko PA, Tikhonchuk EY, Hausmann H, Serafin M, Dahl JEP, Carlson RMK, Schreiner PR (2012) Stable alkanes containing very long carbon-carbon bonds. J Am Chem Soc 134:13641–13650

    Article  Google Scholar 

  30. Zhao CB, Guo YL, Guan L, Ge HG, Yin SW, Wang WL (2014) Theoretical investigation on charge transport parameters of two novel heterotetracenes as ambipolar organic semiconductors. Synth Met 188:146–155

    Article  Google Scholar 

  31. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery JA Jr, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Kobayashi R, Normand J, Raghavachari K, Rendell A, Burant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salvador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2009) Gaussian 09, revision A.02. Gaussian Inc., Wallingford

    Google Scholar 

  32. Van Eijck BP, Kroon J (1999) U pack program package for crystal structure prediction: force fields and crystal structure generation for small carbohydrate molecules. J Comput Chem 20:799–812

    Article  Google Scholar 

  33. Panina N, Leusen FJJ, Janssen FFBJ, Verwer P, Meekes H, Vlieg E, Deroover G (2007) Crystal structure prediction of organic pigments: quinacridone as an example. J Appl Crystallogr 40:105–114

    Article  Google Scholar 

  34. Day GM, Chisholm J, Shan N, Motherwell WDS, Jones W (2004) An assessment of lattice energy minimization for the prediction of molecular organic crystal structures. Cryst Growth Des 4:1327–1340

    Article  Google Scholar 

  35. Chaudhry AR, Ahmed R, Irfan A, Shabbir M, Shaari A, Al-Sehemi A (2014) Influence of push-pull configuration on the electro-optical and charge transport properties of novel naphtho-difuran derivatives: a DFT study. RSC Adv 4:48876–48887

    Article  Google Scholar 

  36. Chaudhry AR, Ahmed R, Irfan A, Shaari A, Matisa AR, Muhammad S, Al-Sehemi Abdullah G (2015) Effect of donor strength of extended alkyl auxiliary groups on optoelectronic and charge transport properties of novel Naphtha[2,1-b:6,5-b′]difuran derivatives: simple yet effective strategy. J Mol Model 21:1–16

    Article  Google Scholar 

  37. Gdanitz RJ (1992) Prediction of molecular crystal structures by Monte Carlo simulated annealing without reference to diffraction data. Chem Phys Lett 190:391–396

    Article  Google Scholar 

  38. Chang YF, Lu ZY, An LJ, Zhang JP (2012) From molecules to materials: molecular and Crystal engineering design of organic optoelectronic functional materials for high carrier mobility. J Phys Chem C 116:1195–1199

    Article  Google Scholar 

  39. Briseno AL, Mao Q, Ling MM, Colin R, Meng H, Bao ZN, Wudl F (2006) Hexathiapentacene: structure, molecular packing, and thin-film transistors. J Am Chem Soc 128:15576–15577

    Article  Google Scholar 

  40. Chen XK, Guo JF, Zou LY, Ren AM, Fan JX (2011) A promising approach to obtain excellent n-type organic field-effect transistors: introducing pyrazine ring. J Phys Chem C 115:21416–21428

    Article  Google Scholar 

  41. Lee C, Sohlberg K (2010) The effect of substitution on reorganization energy and charge mobility in metal free phthalocyanine. Chem Phys 367:7–19

    Article  Google Scholar 

  42. Wan A, Hwang J, Amy F, Kahn A (2005) Impact of electrode contamination on the α-NPD/Au hole injection barrier. Org Electron 6:47–54

    Article  Google Scholar 

  43. Zhang SF, Chen XK, Fan JX, Ren AM (2013) Charge transport properties in a series of five-ring-fused thienoacenes: a quantum chemistry and molecular mechanic study. Org Electron 14:607–620

    Article  Google Scholar 

  44. Wen Y, Liu Y (2010) Recent progress in n-channel organic thin-film transistors. Adv Mater 22:1331–1345

    Article  Google Scholar 

  45. Chang YC, Kuo MY, Chen CP, Lu HF, Chao I (2010) On the air stability of N-channel organic field-effect transistors: a theoretical study of adiabatic electron affinities of organic semiconductors. J Phys Chem C 114:11595–11601

    Article  Google Scholar 

  46. Coropceanu V, Cornil J, Filho DADS, Olivier Y, Silbey R, Bredas JL (2007) Charge transport in organic semiconductors. Chem Rev 107:926–952

    Article  Google Scholar 

  47. Zhao CB, Ge HG, Yin SW, Wang WL (2014) Theoretical investigation on the crystal structures and electron transport properties of several nitrogen-rich pentacene derivatives. J Mol Model 20:2158

    Article  Google Scholar 

  48. Kenji K, Reishi S, Masatoshi K, Masamichi Y, Kentaro Y (2006) Synthesis and cofacial π-stacked packing arrangement of 6,13-bis(alkylthio)pentacene. Org Lett 8:2385–2388

    Article  Google Scholar 

  49. Yang XD, Wang LJ, Wang CL, Long W, Shuai ZG (2008) Influences of crystal structures and molecular sizes on the charge mobility of organic semiconductors: oligothiophenes. Chem Mater 20:3205–3211

    Article  Google Scholar 

  50. Yin J, Chaitanya K, Ju XH (2015) Structures and charge transport properties of “selenosulflower” and its selenium analogue “selflower”: computer-aided design of high-performance ambipolar organic semiconductors. J Mater Chem C 3:3472–3481

    Article  Google Scholar 

  51. Anthony EJ (2006) Functionalized acenes and heteroacenes for organic electronics. Chem Rev 106:5028–5048

    Article  Google Scholar 

Download references

Acknowledgements

The authors thank the National Science Foundation of China (No. 21372116), the Project Funded by China Postdoctoral Science Foundation (No. 2015M581082) as well as the Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD) for supporting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xue-Hai Ju.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 760 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, Y., Chaitanya, K., Yin, J. et al. Theoretical investigation on the crystal structures and electron transfer properties of cyanated TTPO and their selenium analogs. J Mater Sci 51, 6235–6248 (2016). https://doi.org/10.1007/s10853-016-9921-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9921-8

Keywords

Navigation