Synthesis of lithium titanium oxide (Li4Ti5O12) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries

Abstract

Lithium titanium oxide (LTO: Li4Ti5O12) particles were produced via a continuous supercritical fluid process for use as anodes in lithium ion batteries. The synthesized LTO particles in supercritical water (scH2O) or in supercritical methanol (scMeOH) generate nanoparticles of 10–30 nm sizes, and the modified LTO particles using oleylamine in scMeOH affects the inhibition of particle growth. The modified LTO particle was coated by the usage of supercritical carbon dioxide (scCO2) and polyethylene glycol (PEG-400). The conformal coverage of the carbon layer on LTO particles with a thickness of 1.2 nm, and a uniform distribution of carbon on the entire surface of LTO particles are confirmed. The modified and carbon-coated LTO with a carbon content of 5.3 wt% exhibits a high discharge capacity of 175 mAh/g (which approaches the theoretical value of LTO) at 0.1 C and 83 mAh/g at 50 C. The carbon-coated LTO prepared using supercritical fluids delivered 160, 153, 123 mAh/g at 1 C and 60 °C, room temperature, and −25 °C, respectively.

This is a preview of subscription content, access via your institution.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

References

  1. 1

    Aricò AS, Bruce P, Scrosati B, Tarascon J-M, Schalkwijk WV (2005) Nanostructured materials for advanced energy conversion and storage devices. Nat Mater 4:366–377

    Article  Google Scholar 

  2. 2

    Amine K, Belharouak I, Chen Z, Tran T, Yumoto H, Ota N et al (2010) Nanostructured anode material for high-power battery system in electric vehicles. Adv Mater 22:3052–3057

    Article  Google Scholar 

  3. 3

    Goodenough JB, Park K-S (2013) The Li-Ion Rechargeable Battery: a Perspective. J Am Chem Soc 135:1167–1176

    Article  Google Scholar 

  4. 4

    Marom R, Amalraj SF, Leifer N, Jacob D, Aurbach D (2011) A review of advanced and practical lithium battery materials. J Mater Chem 21:9938–9954

    Article  Google Scholar 

  5. 5

    Sun Y-K, Myung S-T, Park B-C, Prakash J, Belharouak I, Amine AK (2009) High-energy cathode material for long-life and safe lithium batteries. Nat Mater 8:320–324

    Article  Google Scholar 

  6. 6

    Yang S, Feng X, Müllen K (2011) Sandwich-like, graphene-based titania nanosheets with high surface area for fast lithium storage. Adv Mater 23:3575–3579

    Article  Google Scholar 

  7. 7

    Kang E, Jung YS, Kim G-H, Chun J, Wiesner U, Dillon AC et al (2011) Highly improved rate capability for a lithium-ion battery nano-Li4Ti5O12 negative electrode via carbon-coated mesoporous uniform pores with a simple self-assembly method. Adv Funct Mater 21:4349–4357

    Article  Google Scholar 

  8. 8

    Lu X, Zhao L, He X, Xiao R, Gu L, Hu Y-S et al (2012) Lithium storage in Li4Ti5O12 spinel: the full static picture from electron microscopy. Adv Mater 24:3233–3238

    Article  Google Scholar 

  9. 9

    Amatucci GG, Badway F, Pasquier AD, Zheng T (2001) An asymmetric hybrid nonaqueous energy storage cell. J Electrochem Soc 148:A930–A939

    Article  Google Scholar 

  10. 10

    Shen L, Zhang X, Li H, Yuan C, Cao G (2011) Design and tailoring of a three-dimensional TiO2–graphene–carbon nanotube nanocomposite for fast lithium storage. J Phys Chem Lett 2:3096–3101

    Article  Google Scholar 

  11. 11

    Zaghib K, Armand M, Gauthier M (1998) Electrochemistry of anodes in solid-state Li-ion polymer batteries. J Electrochem Soc 145:3135–3140

    Article  Google Scholar 

  12. 12

    Haetge J, Hartmann P, Brezesinski K, Janek J, Brezesinski T (2011) Ordered large-pore mesoporous Li4Ti5O12 spinel thin film electrodes with nanocrystalline framework for high rate rechargeable lithium batteries: relationships among charge storage, electrical conductivity, and nanoscale structure. Chem Mater 23:4384–4393

    Article  Google Scholar 

  13. 13

    Chen CH, Vaughey JT, Jansen AN, Dees DW, Kahaian AJ, Goacher T et al (2001) Studies of Mg-substituted Li4−xMgxTi5O12 spinel electrodes (0 < x < 1) for lithium batteries. J Electrochem Soc 148:A102–A104

    Article  Google Scholar 

  14. 14

    Zaghib K, Simoneau M, Armand M, Gauthier M (1999) Electrochemical study of Li4Ti5O12 as negative electrode for Li-ion polymer rechargeable batteries. J Power Sources 81–82:300–305

    Article  Google Scholar 

  15. 15

    Prakash AS, Manikandan P, Ramesha K, Sathiya M, Tarascon J-M, Shukla AK (2010) Solution-combustion synthesized nanocrystalline Li4Ti5O12 as high-rate performance Li-ion battery anode. Chem Mater 22:2857–2863

    Article  Google Scholar 

  16. 16

    Feckl JM, Fominykh K, Döblinger M, Fattakhova-Rohlfing D, Bein T (2012) Nanoscale porous framework of lithium titanate for ultrafast lithium insertion. Angew Chem Int Ed 51:7459–7463

    Article  Google Scholar 

  17. 17

    Su X, Wu Q, Zhan X, Wu J, Wei S, Guo Z (2012) Advanced titania nanostructures and composites for lithium ion battery. J Mater Sci 47:2519–2534. doi:10.1007/s10853-011-5974-x

    Article  Google Scholar 

  18. 18

    Wang J, Zhou Y, Hu Y, O’Hayre R, Shao Z (2013) Porous nanocrystalline TiO2 with high lithium-ion insertion performance. J Mater Sci 48:2733–2742. doi:10.1007/s10853-012-7073-z

    Article  Google Scholar 

  19. 19

    Pohjalainen E, Rauhala T, Valkeapää M, Kallioinen J, Kallio T (2015) Effect of Li4Ti5O12 particle size on the performance of lithium ion battery electrodes at high C-rates and low temperatures. J Phys Chem C 119:2277–2283

    Article  Google Scholar 

  20. 20

    Cheng T, Zhang G, Xia Y, Ji Q, Xiao Y, Wang X et al (2016) Template-free synthesis of titania architectures with controlled morphology evolution. J Mater Sci 51:3941–3956. doi:10.1007/s10853-015-9713-6

    Article  Google Scholar 

  21. 21

    Zhang P, Zhang C, Xie A, Li C, Song J, Shen Y (2016) Novel template-free synthesis of hollow@porous TiO2 superior anode materials for lithium ion battery. J Mater Sci 51:3448–3453. doi:10.1007/s10853-015-9662-0

    Article  Google Scholar 

  22. 22

    Zhu Z, Cheng F, Chen J (2013) Investigation of effects of carbon coating on the electrochemical performance of Li4Ti5O12/C nanocomposites. J Mater Chem A 1:9484–9490

    Article  Google Scholar 

  23. 23

    Cheng L, Li X-L, Liu H-J, Xiong H-M, Zhang P-W, Xiaa Y-Y (2007) Carbon-coated Li4Ti5O12 as a high rate electrode material for Li-ion intercalation. J Electrochem Soc 154:A692–A697

    Article  Google Scholar 

  24. 24

    Jung H-G, Myung S-T, Yoon CS, Son S-B, Oh KH, Amine K et al (2011) Microscale spherical carbon-coated Li4Ti5O12 as ultra high power anode material for lithium batteries. Energy Environ Sci 4:1345–1351

    Article  Google Scholar 

  25. 25

    Zhao L, Hu Y-S, Li H, Wang Z, Chen L (2011) Porous Li4Ti5O12 coated with N-doped carbon from ionic liquids for Li-ion batteries. Adv Mater 23:1385–1388

    Article  Google Scholar 

  26. 26

    Xu GB, Yang LW, Wei XL, Ding JW, Zhong JX, Chu PK (2015) Highly-crystalline ultrathin gadolinium doped and carbon-coated Li4Ti5O12 nanosheets for enhanced lithium storage. J Power Sources 295:305–313

    Article  Google Scholar 

  27. 27

    Ishihara Y, Miyazaki K, Fukutsuka T, Abe T (2014) Lithium-ion transfer at the interface between high potential negative electrodes and ionic liquids. J Electrochem Soc 161:A1939–A1942

    Article  Google Scholar 

  28. 28

    Wang Y, Liu H, Wang K, Eiji H, Wang Y, Zhou H (2009) Synthesis and electrochemical performance of nano-sized Li4Ti5O12 with double surface modification of Ti(III) and carbon. J Mater Chem 19:6789–6795

    Article  Google Scholar 

  29. 29

    Goodwin RD (1987) Methanol thermodynamic properties from 176 to 673 K at pressures to 700 bar. J Phys Chem Ref Data 16:799–826

    Article  Google Scholar 

  30. 30

    Fernández DP, Goodwin ARH, Lemmon EW, Sengers JMHL, Williams RC (1997) A formulation for the static permittivity of water and steam at temperatures from 238 K to 873 K at pressures up to 1200 MPa, including derivatives and Debye-Hückel coefficients. J Phys Chem Ref Data 26:1125–1166

    Article  Google Scholar 

  31. 31

    Butenhoff TJ, Goemans MGE, Buelow SJ (1996) Mass diffusion coefficients and thermal diffusivity in concentrated hydrothermal NaNO3 solutions. J Phys Chem 100:5982–5992

    Article  Google Scholar 

  32. 32

    York P (1999) Strategies for particle design using supercritical fluid technologies. Pharm Sci Technol Today 2:430–440

    Article  Google Scholar 

  33. 33

    Jung J, Perrut M (2001) Particle design using supercritical fluids: literature and patent survey. J Supercrit Fluids 20:179–219

    Article  Google Scholar 

  34. 34

    Shin YH, Koo S-M, Kim DS, Lee Y-H, Veriansyah B, Kim J et al (2009) Continuous hydrothermal synthesis of HT-LiCoO2 in supercritical water. J Supercrit Fluids 50:250–256

    Article  Google Scholar 

  35. 35

    Kanamura K, Dokko K, Kaizawa T (2005) Synthesis of spinel LiMn2O4 by a hydrothermal process in supercritical water with heat-treatment. J Electrochem Soc 152:A391–A395

    Article  Google Scholar 

  36. 36

    Hong S-A, Kim SJ, Chung KY, Lee Y-W, Kim J, Sang B-I (2013) Continuous synthesis of lithium iron phosphate nanoparticles in supercritical water: effect of process parameters. Chem Eng J 229:313–323

    Article  Google Scholar 

  37. 37

    Devaraju MK, Honma I (2013) One-pot synthesis of Li2FePO4F nanoparticles via a supercritical fluid process and characterization for application in lithium-ion batteries. RSC Adv 3:19849–19852

    Article  Google Scholar 

  38. 38

    Kim J, Hong S-A, Yoo J (2015) Continuous synthesis of hierarchical porous ZnO microspheres in supercritical methanol and their enhanced electrochemical performance in lithium ion batteries. Chem Eng J 266:179–188

    Article  Google Scholar 

  39. 39

    Nugroho A, Yoon D, Chung KY, Kim J (2015) Synthesis of Li4Ti5O12/carbon nanocomposites in supercritical methanol for anode in Li-ion batteries: effect of surface modifiers. J Supercrit Fluids 101:72–80

    Article  Google Scholar 

  40. 40

    Dinesh R, Ichihara M, Kudo Tetsuichi, Honma Itaru (2009) Surface modified LiFePO4/C nanocrystals synthesis by organic molecules assisted supercritical water process. J Power Sources 194:1036–1042

    Article  Google Scholar 

  41. 41

    Adschiri T, Lee Y-W, Goto M, Takami S (2011) Green materials synthesis with supercritical water. Green Chem 13:1380–1390

    Article  Google Scholar 

  42. 42

    Nugroho A, Kim SJ, Chung KY, Cho B-W, Lee Y-W, Kim J (2011) Facile synthesis of nanosized Li4Ti5O12 in supercritical water. Electrochem Commun 13:650–653

    Article  Google Scholar 

  43. 43

    Nugroho A, Kim SJ, Chung KY, Kim J (2012) Synthesis of Li4Ti5O12 in supercritical water for Li-ion batteries: reaction mechanism and high-rate performance. Electrochim Acta 78:623–632

    Article  Google Scholar 

  44. 44

    Nugroho A, Kim SJ, Chang W, Chung KY, Kim J (2013) Facile synthesis of hierarchical mesoporous Li4Ti5O12 microspheres in supercritical methanol. J Power Sources 244:164–169

    Article  Google Scholar 

  45. 45

    Nugroho A, Chung KY, Kim J (2014) A facile supercritical alcohol route for synthesizing carbon coated hierarchically mesoporous Li4Ti5O12 microspheres. J Phys Chem C 118:183–193

    Article  Google Scholar 

  46. 46

    Nugroho A, Yoon D, Joo O-S, Chung KY, Kim J (2014) Continuous synthesis of Li4Ti5O12 nanoparticles in supercritical fluids and their electrochemical performance for anode in Li-ion batteries. Chem Eng J 258:357–366

    Article  Google Scholar 

  47. 47

    Rozenberg M, Loewenschuss A, Marcus Y (1998) IR spectra and hydration of short-chain polyethyleneglycols. Spectrochim Acta Part A 54:1819–1826

    Article  Google Scholar 

  48. 48

    Kim J, Park Y-S, Veriansyah B, Kim J-D, Lee Y-W (2008) Continuous synthesis of surface-modified metal oxide nanoparticles using supercritical methanol for highly stabilized nanofluids. Chem Mater 20:6301–6303

    Article  Google Scholar 

  49. 49

    Snyder MQ, DeSisto WJ, Tripp CP (2007) An infrared study of the surface chemistry of lithium titanate spinel (Li4Ti5O12). Appl Surf Sci 253:9336–9341

    Article  Google Scholar 

  50. 50

    Smyrl NR, Fuller EL Jr, Powell GL (1983) Monitoring the heterogeneous reaction of LiH and LiOH with H2O and CO2 by diffuse reflectance infrared fourier transform spectroscopy. Appl Spectrosc 37:38–44

    Article  Google Scholar 

  51. 51

    Doeff MM, Wilcox JD, Kostecki R, Lau G (2006) Optimization of carbon coatings on LiFePO4. J Power Sources 163:180–184

    Article  Google Scholar 

  52. 52

    Hong S-A, Kim SJ, Kim J, Lee BG, Chung KY, Lee Y-W (2012) Carbon coating on lithium iron phosphate (LiFePO4): comparison between continuous supercritical hydrothermal method and solid-state method. Chem Eng J 198–199:318–326

    Article  Google Scholar 

  53. 53

    Vargaftik NB, Volkov BN, Voljak LD (1983) International tables of the surface tension of water. J Phys Chem Ref Data 12:817–820

    Article  Google Scholar 

  54. 54

    Hyatt JA (1984) Liquid and supercritical carbon dioxide as organic solvents. J Org Chem 49:5097–5101

    Article  Google Scholar 

  55. 55

    Fenghour A, Wakeham WA, Vesovic V (1998) The viscosity of carbon dioxide. J Phys Chem Ref Data 27:31–44

    Article  Google Scholar 

  56. 56

    Gourgouillon D, Ponte MND (1999) High pressure phase equilibria for poly(ethylene glycol)s + CO2: experimental results and modelling. Phys Chem Chem Phys 1:5369–5375

    Article  Google Scholar 

  57. 57

    Nalawade SP, Picchioni F, Janssen LPBM (2006) Supercritical carbon dioxide as a green solvent for processing polymer melts: processing aspects and applications. Prog Polym Sci 31:19–43

    Article  Google Scholar 

  58. 58

    Bahrami M, Ranjbarian S (2007) Production of micro- and nano-composite particles by supercritical carbon dioxide. J Supercrit Fluids 40:263–283

    Article  Google Scholar 

  59. 59

    Sanli D, Bozbag SE, Erkey C (2012) Synthesis of nanostructured materials using supercritical CO2: part I. Physical transformations. J Mater Sci 47:2995–3025. doi:10.1007/s10853-011-6054-y

    Article  Google Scholar 

  60. 60

    Bozbag SE, Sanli D, Erkey C (2012) Synthesis of nanostructured materials using supercritical CO2: part II. Chemical transformations. J Mater Sci 47:3469–3492. doi:10.1007/s10853-011-6064-9

    Article  Google Scholar 

  61. 61

    Blackburn JM, Long DP, Cabañas A, Watkins JJ (2001) Deposition of copper and nickel films from supercritical carbon dioxide. Science 294:141–145

    Article  Google Scholar 

  62. 62

    Hunde ET, Watkins JJ (2004) Reactive deposition of cobalt and nickel films from their metallocenes in supercritical carbon dioxide solution. Chem Mater 16:498–503

    Article  Google Scholar 

  63. 63

    Hong S-A, Kim DH, Chung KY, Chang W, Yoo J, Kim J (2014) Toward uniform and ultrathin carbon layer coating on lithium iron phosphate using liquid carbon dioxide for enhanced electrochemical performance. J Power Sources 262:219–223

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by Korea Institute of Energy Technology Evaluation and Planning (20122020100280). Additionally, this research was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (No. 2014R1A5A1009799).

Author information

Affiliations

Authors

Corresponding author

Correspondence to Seung-Ah Hong.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 2923 kb)

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Hong, SA., Lee, S.B., Joo, OS. et al. Synthesis of lithium titanium oxide (Li4Ti5O12) with ultrathin carbon layer using supercritical fluids for anode materials in lithium batteries. J Mater Sci 51, 6220–6234 (2016). https://doi.org/10.1007/s10853-016-9920-9

Download citation

Keywords

  • Discharge Capacity
  • LiFePO4
  • Supercritical Fluid
  • Carbon Layer
  • Supercritical Carbon Dioxide