Abstract
Iron, chromium, lead, europium, silver, copper, strontium, cesium, zinc and nickel are some of the most frequently found heavy metal ions in wastewater and can cause serious health problems. Hence, their removal is essential from the environmental point of view. Recent studies show that graphene oxide (GO) can efficiently remove heavy metal ions from wastewater. A great deal of effort has been made to enhance the waste removal performance of GO using a variety of techniques. The performance of GO as an adsorbent agent to remove various organic pollutants, radioactive wastes and dyes has already been reviewed by various authors. However, the capability of GO and its derivatives to remove heavy metal ions has not been reviewed in detail. This paper reviews the wastewater removal efficiency and sorption mechanism of GO, functionalized GO and their composites for five of the most extensively studied heavy metal ions: Cr(III), Cr(VI), Cu(II), Pb(II) and Au(III). The waste removal kinetics of the adsorbents and the condition for the maximum adsorption are analysed for each of these heavy metal ions.
This is a preview of subscription content, access via your institution.




References
Yang Y, Wu WQ, Zhou HH et al (2014) Adsorption behavior of cross-linked chitosan modified by graphene oxide for Cu(II) removal. J Cent South Univ 21:2826–2831. doi:10.1007/s11771-014-2246-3
Fan L, Luo C, Sun M, Qiu H (2012) Synthesis of graphene oxide decorated with magnetic cyclodextrin for fast chromium removal. J Mater Chem 22:24577–24583. doi:10.1039/c2jm35378d
Li L, Luo C, Li X et al (2014) Preparation of magnetic ionic liquid/chitosan/graphene oxide composite and application for water treatment. Int J Biol Macromol 66:172–178. doi:10.1016/j.ijbiomac.2014.02.031
Jiang T, Liu W, Mao Y et al (2015) Adsorption behavior of copper ions from aqueous solution onto graphene oxide–CdS composite. Chem Eng J 259:603–610. doi:10.1016/j.cej.2014.08.022
Kołodyńska D, Kowalczyk M, Hubicki Z (2014) Evaluation of iron-based hybrid materials for heavy metal ions removal. J Mater Sci 49:2483–2495. doi:10.1007/s10853-013-7944-y
Liu L, Li C, Bao C et al (2012) Preparation and characterization of chitosan/graphene oxide composites for the adsorption of Au(III) and Pd(II). Talanta 93:350–357. doi:10.1016/j.talanta.2012.02.051
Liu L, Liu S, Zhang Q et al (2013) Adsorption of Au(III), Pd(II), and Pt(IV) from aqueous solution onto graphene oxide. J Chem Eng Data 58:209–216. doi:10.1021/je300551c
Dąbrowski A, Hubicki Z, Podkościelny P, Robens E (2004) Selective removal of the heavy metal ions from waters and industrial wastewaters by ion-exchange method. Chemosphere 56:91–106. doi:10.1016/j.chemosphere.2004.03.006
Soylak M, Unsal YE, Kizil N, Aydin A (2010) Utilization of membrane filtration for preconcentration and determination of Cu(II) and Pb(II) in food, water and geological samples by atomic absorption spectrometry. Food Chem Toxicol 48:517–521. doi:10.1016/j.fct.2009.11.005
Agboola O, Mokrani T, Sadiku R (2016) Porous and fractal analysis on the permeability of nanofiltration membranes for the removal of metal ions. J Mater Sci 51:2499–2511. doi:10.1007/s10853-015-9562-3
Noel Jacob K, Senthil Kumar S, Thanigaivelan A et al (2014) Sulfonated polyethersulfone-based membranes for metal ion removal via a hybrid process. J Mater Sci 49:114–122. doi:10.1007/s10853-013-7682-1
Erturk Ü, Yerlikaya C, Sivritepe N (2007) In vitro phytoextraction capacity of blackberry for copper and zinc. Asian J Chem 19:2161–2168
Wang X, Pei Y, Lu M et al (2015) Highly efficient adsorption of heavy metals from wastewaters by graphene oxide-ordered mesoporous silica materials. J Mater Sci 50:2113–2121. doi:10.1007/s10853-014-8773-3
Krishnan KA, Anirudhan TS (2002) Uptake of heavy metals in batch systems by sulfurized steam activated carbon prepared from sugarcane bagasse Pith. Ind Eng Chem Res 41:5085–5093. doi:10.1021/ie0110181
Onganer Y, Temur (Işik) Ç, (1998) Adsorption dynamics of Fe(III) from aqueous solutions onto activated carbon. J Colloid Interface Sci 205:241–244. doi:10.1006/jcis.1998.5616
Qiu B, Wang Y, Sun D et al (2015) Cr(VI) removal by magnetic carbon nanocomposites derived from cellulose at different carbonization temperatures. J Mater Chem A 3:9817–9825. doi:10.1039/C5TA01227A
Zhu J, Gu H, Guo J et al (2014) Mesoporous magnetic carbon nanocomposite fabrics for highly efficient Cr(VI) removal. J Mater Chem A 2:2256–2265. doi:10.1039/C3TA13957C
Qiu B, Gu H, Yan X et al (2014) Cellulose derived magnetic mesoporous carbon nanocomposites with enhanced hexavalent chromium removal. J Mater Chem A 2:17454–17462. doi:10.1039/C4TA04040F
Zhang D, Wei S, Kaila C et al (2010) Carbon-stabilized iron nanoparticles for environmental remediation. Nanoscale 2:917–919. doi:10.1039/c0nr00065e
Abu Al-Rub FA, El-Naas MH, Benyahia F, Ashour I (2004) Biosorption of nickel on blank alginate beads, free and immobilized algal cells. Process Biochem 39:1767–1773. doi:10.1016/j.procbio.2003.08.002
Thirunavukkarasu OS, Viraraghavan T, Subramanian KS (2003) Arsenic removal from drinking water using iron oxide-coated sand. Water Air Soil Pollut 142:95–111
El Mouzdahir Y, Elmchaouri A, Mahboub R et al (2007) Interaction of stevensite with Cd2+ and Pb2+ in aqueous dispersions. Appl Clay Sci 35:47–58. doi:10.1016/j.clay.2006.08.002
Wan Ngah WS, Kamari A, Koay YJ (2004) Equilibrium and kinetics studies of adsorption of copper(II) on chitosan and chitosan/PVA beads. Int J Biol Macromol 34:155–161. doi:10.1016/j.ijbiomac.2004.03.001
Galhoum AA, Atia AA, Mahfouz MG et al (2015) Dy(III) recovery from dilute solutions using magnetic-chitosan nano-based particles grafted with amino acids. J Mater Sci 50:2832–2848. doi:10.1007/s10853-015-8845-z
Liu B, Wang D, Xu Y, Huang G (2011) Adsorption properties of Cd(II)-imprinted chitosan resin. J Mater Sci 46:1535–1541. doi:10.1007/s10853-010-4958-6
Qiu B, Xu C, Sun D et al (2015) Polyaniline coating with various substrates for hexavalent chromium removal. Appl Surf Sci 334:7–14. doi:10.1016/j.apsusc.2014.07.039
Qiu B, Xu C, Sun D et al (2014) Polyaniline coating on carbon fiber fabrics for improved hexavalent chromium removal. RSC Adv 4:29855–29865. doi:10.1039/c4ra01700e
Gu H, Rapole SB, Sharma J et al (2012) Magnetic polyaniline nanocomposites toward toxic hexavalent chromium removal. RSC Adv 2:11007–11018. doi:10.1039/c2ra21991c
Qiu B, Guo J, Zhang X et al (2014) Polyethylenimine facilitated ethyl cellulose for hexavalent chromium removal with a wide pH range. ACS Appl Mater Interfaces 6:19816–19824. doi:10.1021/am505170j
Qiu B, Xu C, Sun D et al (2014) Polyaniline coated ethyl cellulose with improved hexavalent chromium removal. ACS Sustain Chem Eng 2:2070–2080. doi:10.1021/sc5003209
Kakavandi B, Kalantary RR, Jafari AJ et al (2015) Pb(II) adsorption onto a magnetic composite of activated carbon and superparamagnetic Fe3O4 nanoparticles: experimental and modeling study. Clean Soil Air Water 43:1157–1166. doi:10.1002/clen.201400568
Abas SNA, Ismail MHS, Siajam SI, Kamal ML (2015) Development of novel adsorbent-mangrove-alginate composite bead (MACB) for removal of Pb(II) from aqueous solution. J Taiwan Inst Chem Eng 50:182–189. doi:10.1016/j.jtice.2014.11.013
Wang X, Shao D, Hou G et al (2015) Uptake of Pb(II) and U(VI) ions from aqueous solutions by the ZSM-5 zeolite. J Mol Liq 207:338–342. doi:10.1016/j.molliq.2015.04.029
Yu Y, Shapter JG, Popelka-Filcoff R et al (2014) Copper removal using bio-inspired polydopamine coated natural zeolites. J Hazard Mater 273:174–182. doi:10.1016/j.jhazmat.2014.03.048
Sharaf El-Deen SE, Sharaf El-Deen GE (2015) Adsorption of Cr(VI) from aqueous solution by activated carbon prepared from agricultural solid waste. Sep Sci Technol 50:1469–1479. doi:10.1080/01496395.2015.1004348
Liu Q, Yang B, Zhang L, Huang R (2015) Adsorptive removal of Cr(VI) from aqueous solutions by cross-linked chitosan/bentonite composite. Korean J Chem Eng 32:1314–1322. doi:10.1007/s11814-014-0339-1
Fujiwara K, Ramesh A, Maki T et al (2007) Adsorption of platinum (IV), palladium (II) and gold (III) from aqueous solutions onto l-lysine modified crosslinked chitosan resin. J Hazard Mater 146:39–50. doi:10.1016/j.jhazmat.2006.11.049
Sitko R, Turek E, Zawisza B et al (2013) Adsorption of divalent metal ions from aqueous solutions using graphene oxide. Dalton Trans 42:5682–5689. doi:10.1039/c3dt33097d
Zhou NL, Gu H, Tang FF et al (2013) Biocompatibility of novel carboxylated graphene oxide-glutamic acid complexes. J Mater Sci 48:7097–7103. doi:10.1007/s10853-013-7523-2
Zhou Q, Zhong YH, Chen X et al (2014) Adsorption and photocatalysis removal of fulvic acid by TiO2-graphene composites. J Mater Sci 49:1066–1075. doi:10.1007/s10853-013-7784-9
Zhu J, Chen M, Qu H et al (2013) Magnetic field induced capacitance enhancement in graphene and magnetic graphene nanocomposites. Energy Environ Sci 6:194. doi:10.1039/c2ee23422j
Zhu J, Sadu R, Wei S et al (2012) Magnetic graphene nanoplatelet composites toward arsenic removal. ECS J Solid State Sci Technol 1:M1–M5. doi:10.1149/2.010201jss
Chen R, Zhao T, Tian T et al (2014) Graphene-wrapped sulfur/metal organic framework-derived microporous carbon composite for lithium sulfur batteries. APL Mater 2:124109. doi:10.1063/1.4901751
Porwal H, Tatarko P, Grasso S et al (2013) Toughened and machinable glass matrix composites reinforced with graphene and graphene-oxide nano platelets. Sci Technol Adv Mater 14:055007. doi:10.1088/1468-6996/14/5/055007
Namvari M, Namazi H (2015) Preparation of efficient magnetic biosorbents by clicking carbohydrates onto graphene oxide. J Mater Sci 50:5348–5361. doi:10.1007/s10853-015-9082-1
Reina A, Jia X, Ho J et al (2009) Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition. Nano Lett 9:30–35. doi:10.1021/nl801827v
Gomez De Arco L, Zhang Y, Schlenker CW, Ryu K, Thompson MEZC (2010) Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS Nano 4:2865–2873
Hsu F-H, Huang J-W, Wu T-M (2015) Electrochemical characteristics of graphene nanoribbon/polypyrrole composite prepared via oxidation polymerization in the presence of poly-(sodium 4-styrenesulfonate). Mater Chem Phys 161:265–270. doi:10.1016/j.matchemphys.2015.05.051
Mendoza-Sánchez B, Coelho J, Pokle A, Nicolosi V (2015) A 2D graphene-manganese oxide nanosheet hybrid synthesized by a single step liquid-phase co-exfoliation method for supercapacitor applications. Electrochim Acta 174:696–705. doi:10.1016/j.electacta.2015.06.030
Kamali AR, Fray DJ (2013) Molten salt corrosion of graphite as a possible way to make carbon nanostructures. Carbon N Y 56:121–131. doi:10.1016/j.carbon.2012.12.076
Kamali AR, Fray D (2015) Large-scale preparation of graphene by high temperature insertion of hydrogen in graphite. Nanoscale 7:11310–11320. doi:10.1039/C5NR01132A
Zhu J, Wei S, Gu H et al (2012) One-pot synthesis of magnetic graphene nanocomposites decorated with core@double-shell nanoparticles for fast chromium removal. Environ Sci Technol 46:977–985. doi:10.1021/es2014133
Zhu J, Chen M, He Q et al (2013) An overview of the engineered graphene nanostructures and nanocomposites. RSC Adv 3:22790–22824. doi:10.1039/c3ra44621b
Kamali AR (2016) Eco-friendly production of high quality low cost graphene and its application in lithium ion batteries. Green Chem. doi:10.1039/C5GC02455B
Kamali AR, Fray D (2016) Electrochemical interaction between graphite and molten salts to produce nanotubes, nanoparticles, graphene and nanodiamonds. J Mater Sci 51:569–576. doi:10.1007/s10853-015-9340-2
Chen JH, Xing HT, Guo HX et al (2014) Investigation on the adsorption properties of Cr(VI) ions on a novel graphene oxide (GO) based composite adsorbent. J Mater Chem A 2:12561–12570. doi:10.1039/C4TA02004A
Hadi Najafabadi H, Irani M, Roshanfekr Rad L et al (2015) Removal of Cu2+, Pb2+ and Cr6+ from aqueous solutions using a chitosan/graphene oxide composite nanofibrous adsorbent. RSC Adv 5:16532–16539. doi:10.1039/C5RA01500F
Wei H, Zhu J, Wu S et al (2013) Electrochromic polyaniline/graphite oxide nanocomposites with endured electrochemical energy storage. Polymer (Guildf) 54:1820–1831. doi:10.1016/j.polymer.2013.01.051
Guo F, Liu Y, Wang H et al (2015) Adsorption behavior of Cr(VI) from aqueous solution onto magnetic graphene oxide functionalized with 1,2-diaminocyclohexanetetraacetic acid. RSC Adv 5:45384–45392. doi:10.1039/C5RA02015H
Liu X, Zhou Y, Nie W, Song L (2015) Fabrication of hydrogel of hydroxypropyl cellulose (HPC) composited with graphene oxide and its application for methylene blue removal. J Mater Sci 50:6113–6123. doi:10.1007/s10853-015-9166-y
Parmar KR, Patel I, Basha S, Murthy ZVP (2014) Synthesis of acetone reduced graphene oxide/Fe3O4 composite through simple and efficient chemical reduction of exfoliated graphene oxide for removal of dye from aqueous solution. J Mater Sci 49:6772–6783. doi:10.1007/s10853-014-8378-x
Huang LJ, Wang YX, Tang JG et al (2015) A new graphene nanocomposite to improve the electrochemical properties of magnesium-based amorphous alloy. Mater Lett 160:104–108. doi:10.1016/j.matlet.2015.07.080
Yang J, Wu J, Lu Q, Lin T (2014) Facile preparation of lignosulfonate–graphene oxide–polyaniline ternary nanocomposite as an effective adsorbent for Pb(II) ions. ACS Sustain Chem Eng 2:1203–1211. doi:10.1021/sc500030v
Wang Y, He Q, Qu H et al (2014) Magnetic graphene oxide nanocomposites: nanoparticles growth mechanism and property analysis. J Mater Chem C 2:9478–9488. doi:10.1039/C4TC01351D
Chung C, Kim YK, Shin D et al (2013) Biomedical applications of graphene and graphene oxide. Acc Chem Res 46:2211–2224. doi:10.1021/ar300159f
Zhu Y, James DK, Tour JM (2012) New routes to graphene, graphene oxide and their related applications. Adv Mater 24:4924–4955. doi:10.1002/adma.201202321
Kyzas GZ, Deliyanni EA, Matis KA (2014) Graphene oxide and its application as an adsorbent for wastewater treatment. J Chem Technol Biotechnol 89:196–205. doi:10.1002/jctb.4220
William S, Hummers J, Offeman RE (1958) Preparation of graphitic Oxide. J Am Chem Soc 80:1339. doi:10.1021/ja01539a017
Cui L, Wang Y, Gao L et al (2015) Removal of Hg(II) from aqueous solution by resin loaded magnetic β-cyclodextrin bead and graphene oxide sheet: synthesis, adsorption mechanism and separation properties. J Colloid Interface Sci 456:42–49. doi:10.1016/j.jcis.2015.06.007
Zhu J, Wei S, Chen M et al (2013) Magnetic nanocomposites for environmental remediation. Adv Powder Technol 24:459–467. doi:10.1016/j.apt.2012.10.012
Hu XJ, Liu YG, Wang H et al (2013) Removal of Cu(II) ions from aqueous solution using sulfonated magnetic graphene oxide composite. Sep Purif Technol 108:189–195. doi:10.1016/j.seppur.2013.02.011
Kyzas GZ, Travlou NA, Kalogirou O, Deliyanni EA (2013) Magnetic graphene oxide: effect of preparation route on reactive black 5 adsorption. Materials (Basel) 6:1360–1376. doi:10.3390/ma6041360
He YQ, Zhang NN, Wang XD (2011) Adsorption of graphene oxide/chitosan porous materials for metal ions. Chinese Chem Lett 22:859–862. doi:10.1016/j.cclet.2010.12.049
Zhang N, Qiu H, Si Y et al (2011) Fabrication of highly porous biodegradable monoliths strengthened by graphene oxide and their adsorption of metal ions. Carbon N Y 49:827–837. doi:10.1016/j.carbon.2010.10.024
Wang Y, Liu X, Wang H et al (2014) Microporous spongy chitosan monoliths doped with graphene oxide as highly effective adsorbent for methyl orange and copper nitrate (Cu(NO3)2) ions. J Colloid Interface Sci 416:243–251. doi:10.1016/j.jcis.2013.11.012
Fan L, Luo C, Sun M et al (2013) Highly selective adsorption of lead ions by water-dispersible magnetic chitosan/graphene oxide composites. Colloids Surfaces B Biointerfaces 103:523–529. doi:10.1016/j.colsurfb.2012.11.006
Li L, Fan L, Sun M et al (2013) Adsorbent for hydroquinone removal based on graphene oxide functionalized with magnetic cyclodextrin-chitosan. Int J Biol Macromol 58:169–175. doi:10.1016/j.ijbiomac.2013.03.058
Ge H, Ma Z (2015) Microwave preparation of triethylenetetramine modified graphene oxide/chitosan composite for adsorption of Cr(VI). Carbohydr Polym 131:280–287. doi:10.1016/j.carbpol.2015.06.025
Li L, Wang Z, Ma P et al (2015) Preparation of polyvinyl alcohol/chitosan hydrogel compounded with graphene oxide to enhance the adsorption properties for Cu(II) in aqueous solution. J Polym Res 22:150. doi:10.1007/s10965-015-0794-3
Sheshmani Shabnam, Mehrnaz Akhundi Nematzadeh SS, Ashori A (2015) Preparation of graphene oxide/chitosan/FeOOH nanocomposite for the removal of Pb(II) from aqueous solution. Int J Biol Macromol 80:475–480. doi:10.1007/s11814-015-0156-1
Wang Y, Yan T, Gao L et al (2016) Magnetic hydroxypropyl chitosan functionalized graphene oxide as adsorbent for the removal of lead ions from aqueous solution. Desalin Water Treat 57:3975–3984. doi:10.1080/19443994.2014.989273
Jiang T, Yan L, Zhang L et al (2015) Fabrication of a novel graphene oxide/β-FeOOH composite and its adsorption behavior for copper ions from aqueous solution. Dalt Trans 44:10448–10456. doi:10.1039/C5DT01030F
Li S, Lu X, Xue Y et al (2012) Fabrication of polypyrrole/graphene oxide composite nanosheets and their applications for Cr(VI) removal in aqueous solution. PLoS ONE 7:e43328. doi:10.1371/journal.pone.0043328
Chauke VP, Maity A, Chetty A (2015) High-performance towards removal of toxic hexavalent chromium from aqueous solution using graphene oxide-alpha cyclodextrin-polypyrrole nanocomposites. J Mol Liq 211:71–77. doi:10.1016/j.molliq.2015.06.044
Hu XJ, Liu YG, Wang H et al (2014) Adsorption of copper by magnetic graphene oxide-supported β-cyclodextrin: effects of pH, ionic strength, background electrolytes, and citric acid. Chem Eng Res Des 3:675–683. doi:10.1016/j.cherd.2014.06.002
Sui N, Wang L, Wu X et al (2015) Polyethylenimine modified magnetic graphene oxide nanocomposites for Cu2+ removal. RSC Adv 5:746–752. doi:10.1039/C4RA11669K
Liu Y, Xu L, Liu J et al (2016) Graphene oxides cross-linked with hyperbranched polyethylenimines: preparation, characterization and their potential as recyclable and highly efficient adsorption materials for lead(II) ions. Chem Eng J 285:698–708. doi:10.1016/j.cej.2015.10.047
Zhou G, Liu C, Tang Y et al (2015) Sponge-like polysiloxane-graphene oxide gel as a highly efficient and renewable adsorbent for lead and cadmium metals removal from wastewater. Chem Eng J 280:275–282. doi:10.1016/j.cej.2015.06.041
Sitko R, Zawisza B, Talik E et al (2014) Spherical silica particles decorated with graphene oxide nanosheets as a new sorbent in inorganic trace analysis. Anal Chim Acta 834:22–29. doi:10.1016/j.aca.2014.05.014
Li H, Chi Z, Li J (2014) Covalent bonding synthesis of magnetic graphene oxide nanocomposites for Cr(III) removal. Desalin Water Treat 52:1937–1946. doi:10.1080/19443994.2013.806224
Wang Y, Liang S, Chen B et al (2013) Synergistic removal of Pb(II), Cd(II) and humic acid by Fe3O4@Mesoporous silica–graphene oxide composites. PLoS ONE 8:2–9. doi:10.1371/journal.pone.0065634
Madadrang CJ, Kim HY, Gao G et al (2012) Adsorption behavior of EDTA-graphene oxide for Pb(II) removal. ACS Appl Mater Interfaces 4:1186–1193. doi:10.1021/am201645g
Cui L, Wang Y, Gao L et al (2015) EDTA functionalized magnetic graphene oxide for removal of Pb(II), Hg(II) and Cu(II) in water treatment: adsorption mechanism and separation property. Chem Eng J 281:1–10. doi:10.1016/j.cej.2015.06.043
Zhu X, Cui Y, Chang X, Wang H (2016) Selective solid-phase extraction and analysis of trace-level Cr(III), Fe(III), Pb(II), and Mn(II) Ions in wastewater using diethylenetriamine-functionalized carbon nanotubes dispersed in graphene oxide colloids. Talanta 146:358–363. doi:10.1016/j.talanta.2015.08.073
Kumar ASK, Kakan SS, Rajesh N (2013) A novel amine impregnated graphene oxide adsorbent for the removal of hexavalent chromium. Chem Eng J 230:328–337. doi:10.1016/j.cej.2013.06.089
Xing HT, Chen JH, Sun X et al (2015) NH2-rich polymer/graphene oxide use as a novel adsorbent for removal of Cu(II) from aqueous solution. Chem Eng J 263:280–289. doi:10.1016/j.cej.2014.10.111
Yari M, Rajabi M, Moradi O et al (2015) Kinetics of the adsorption of Pb(II) ions from aqueous solutions by graphene oxide and thiol functionalized graphene oxide. J Mol Liq 209:50–57. doi:10.1016/j.molliq.2015.05.022
Yu Y, De Andrade LCX, Fang L et al (2015) Graphene oxide and hyperbranched polymer-toughened hydrogels with improved absorption properties and durability. J Mater Sci 50:3457–3466. doi:10.1007/s10853-015-8905-4
Sitko R, Janik P, Feist B et al (2014) Suspended aminosilanized graphene oxide nanosheets for selective preconcentration of lead ions and ultrasensitive determination by electrothermal atomic absorption spectrometry. ACS Appl Mater Interfaces 6:20144–20153. doi:10.1021/am505740d
Luo S, Xu X, Zhou G et al (2014) Amino siloxane oligomer-linked graphene oxide as an efficient adsorbent for removal of Pb(II) from wastewater. J Hazard Mater 274:145–155. doi:10.1016/j.jhazmat.2014.03.062
Zhang F, Wang B, He S, Man R (2014) Preparation of graphene-oxide/polyamidoamine dendrimers and their adsorption properties toward some heavy metal ions. J Chem Eng Data 59:1719–1726. doi:10.1021/je500219e
Sitko R, Janik P, Zawisza B et al (2015) Green approach for ultratrace determination of divalent metal ions and arsenic species using total-reflection X-ray fluorescence spectrometry and mercapto-modified graphene oxide nanosheets as a novel adsorbent. Anal Chem 87:3535–3542. doi:10.1021/acs.analchem.5b00283
Algothmi WM, Bandaru NM, Yu Y et al (2013) Alginate-graphene oxide hybrid gel beads: an efficient copper adsorbent material. J Colloid Interface Sci 397:32–38. doi:10.1016/j.jcis.2013.01.051
Tan M, Liu X, Li W, Li H (2015) Enhancing sorption capacities for copper(II) and lead(II) under weakly acidic conditions by l-tryptophan-functionalized graphene oxide. J Chem Eng Data 60:1469–1475. doi:10.1021/acs.jced.5b00015
Li L, Duan H, Wang X, Luo C (2014) Adsorption property of Cr(VI) on magnetic mesoporous titanium dioxide–graphene oxide core–shell microspheres. New J Chem 38:6008–6016. doi:10.1039/C4NJ00782D
Zhang F, Song Y, Song S et al (2015) Synthesis of magnetite-graphene oxide-layered double hydroxide composites and applications for the removal of Pb(II) and 2,4-dichlorophenoxyacetic acid from aqueous solutions. ACS Appl Mater Interfaces 7:7251–7263. doi:10.1021/acsami.5b00433
Dandu Kamakshi Gari VR, Kim M (2015) Removal of Pb(II) using silver nanoparticles deposited graphene oxide: equilibrium and kinetic studies. Monatshefte fur Chemie 146:1445–1453. doi:10.1007/s00706-015-1429-4
Kumar S, Nair RR, Pillai PB et al (2014) Graphene oxide-MnFe2O4 magnetic nanohybrids for efficient removal of lead and arsenic from water. ACS Appl Mater Interfaces 6:17426–17436. doi:10.1021/am504826q
Cui L, Wang Y, Hu L et al (2015) Mechanism of Pb(II) and methylene blue adsorption onto magnetic carbonate hydroxyapatite/graphene oxide. RSC Adv 5:9759–9770. doi:10.1039/C4RA13009J
Ding Z, Hu X, Morales VL, Gao B (2014) Filtration and transport of heavy metals in graphene oxide enabled sand columns. Chem Eng J 257:248–252. doi:10.1016/j.cej.2014.07.034
Hou W, Zhang Y, Liu T et al (2015) Graphene oxide coated quartz sand as a high performance adsorption material in the application of water treatment. RSC Adv 5:8037–8043. doi:10.1039/C4RA11430B
Liu M, Wen T, Wu X et al (2013) Synthesis of porous Fe3O4 hollow microspheres/graphene oxide composite for Cr(VI) removal. Dalton Trans 42:14710–14717. doi:10.1039/c3dt50955a
Fan L, Li M, Lv Z et al (2012) Fabrication of magnetic chitosan nanoparticles grafted with β-cyclodextrin as effective adsorbents toward hydroquinol. Colloids Surfaces B Biointerfaces 95:42–49. doi:10.1016/j.colsurfb.2012.02.007
Rogers RD (2007) Materials science: reflections on ionic liquids. Nature 447:917–918. doi:10.1038/447917a
Ferreira LS, Trierweiler JO (2009) Modeling and simulation of the polymeric nanocapsule formation process. IFAC Proc 7:405–410. doi:10.1002/aic
Endres F (2010) Physical chemistry of ionic liquids. Phys Chem Chem Phys 12:1648. doi:10.1039/c001176m
Kumar SKA, Gupta T, Kakan SS et al (2012) Effective adsorption of hexavalent chromium through a three center (3c) co-operative interaction with an ionic liquid and biopolymer. J Hazard Mater 239–240:213–224. doi:10.1016/j.jhazmat.2012.08.065
Rekharsky MV, Inoue Y (2002) Complexation and chiral recognition thermodynamics of 6-amino-6-deoxy-beta-cyclodextrin with anionic, cationic, and neutral chiral guests: counterbalance between van der Waals and Coulombic interactions. J Am Chem Soc 124:813–826. doi:10.1021/ja010889z
Guo Y, Guo S, Ren J et al (2010) Cyclodextrin functionalized graphene nanosheets with high supramolecular recognition capability: synthesis and host–guest inclusion for enhanced electrochemical performance. ACS Nano 4:4001–4010. doi:10.1021/nn100939n
Ezzeddine Z, Batonneau-Gener I, Pouilloux Y et al (2015) Divalent heavy metals adsorption onto different types of EDTA-modified mesoporous materials: effectiveness and complexation rate. Microporous Mesoporous Mater 212:125–136. doi:10.1016/j.micromeso.2015.03.013
Awual MR, Jyo A (2009) Rapid column-mode removal of arsenate from water by crosslinked poly(allylamine) resin. Water Res 43:1229–1236. doi:10.1016/j.watres.2008.12.018
Tomalia DA, Baker H, Dewald J et al (1985) A new class of polymers: starburst-dendritic macromolecules. Polym J 17:117–132. doi:10.1295/polymj.17.117
Tomalia D, Baker JR, Dewald J et al (1986) Dendritic macromolecules: synthesis of starburst dendrimers. Macromolecules 19:2466–2468. doi:10.1021/ma00163a029
Compton OC, Dikin DA, Putz KW et al (2010) Electrically conductive “alkylated” graphene paper via chemical reduction of amine-functionalized graphene oxide paper. Adv Mater 22:892–896. doi:10.1002/adma.200902069
Che J, Shen L, Xiao Y (2010) A new approach to fabricate graphene nanosheets in organic medium: combination of reduction and dispersion. J Mater Chem 20:1722–1727. doi:10.1039/b922667b
Tzu T, Tsuritani T, Sato K (2013) Sorption of Pb(II), Cd(II), and Ni(II) toxic metal ions by alginate-bentonite. J Environ Prot (Irvine, Calif) 04:51–55. doi:10.4236/jep.2013.41B010
Yang X, Chen C, Li J et al (2012) Graphene oxide-iron oxide and reduced graphene oxide-iron oxide hybrid materials for the removal of organic and inorganic pollutants. RSC Adv 2:8821. doi:10.1039/c2ra20885g
De Cuyper M, Muller PLH (2003) Synthesis of magnetic Fe3O4 particles covered with a modifiable phospholipid coat. J Phys: Condens Matter 1425:3179–3188
Qian G, Li M, Wang F, Liu X (2014) Removal of Fe3+ from aqueous solution by natural apatite. J Surf Eng Mater Adv Technol 2014:14–20
Aliabadi M, Irani M, Ismaeili J, Najafzadeh S (2014) Design and evaluation of chitosan/hydroxyapatite composite nanofiber membrane for the removal of heavy metal ions from aqueous solution. J Taiwan Inst Chem Eng 45:518–526. doi:10.1016/j.jtice.2013.04.016
Li X, Xia T, Xu C et al (2014) Synthesis and photoactivity of nanostructured CdS-TiO2 composite catalysts. Catal Today 225:64–73. doi:10.1016/j.cattod.2013.10.086
Tian Y, Gao B, Silvera-Batista C, Ziegler KJ (2010) Transport of engineered nanoparticles in saturated porous media. J Nanoparticle Res 12:2371–2380. doi:10.1007/s11051-010-9912-7
Ebadi M, Saadat M, Shagholani H (2015) A new one-pot reverse microemulsion synthesis of ZnS nanoparticle using olive oil as organic solvent and surfactant and their application in remove heavy metal ions. J Mater Sci: Mater Electron 26:9087–9091. doi:10.1007/s10854-015-3595-x
Lei Y, Chen F, Luo Y, Zhang L (2014) Three-dimensional magnetic graphene oxide foam/Fe3O4 nanocomposite as an efficient absorbent for Cr(VI) removal. J Mater Sci 49:4236–4245. doi:10.1007/s10853-014-8118-2
Gu H, Rapole SB, Huang Y, Cao D, Luo Z, Wei SGZ (2013) Synergistic interactions between multi-walled carbon nanotubes and toxic hexavalent chromium. J Mater Chem A 1:2011–2021. doi:10.1039/c2ta00550f
Zhang K, Kemp KC, Chandra V (2012) Homogeneous anchoring of TiO2 nanoparticles on graphene sheets for waste water treatment. Mater Lett 81:127–130. doi:10.1016/j.matlet.2012.05.002
Uysal M, Ar I (2007) Removal of Cr(VI) from industrial wastewaters by adsorption. Part I: determination of optimum conditions. J Hazard Mater 149:482–491. doi:10.1016/j.jhazmat.2007.04.019
Yang S, Li L, Pei Z et al (2014) Adsorption kinetics, isotherms and thermodynamics of Cr(III) on graphene oxide. Colloids Surfaces A Physicochem Eng Asp 457:100–106. doi:10.1016/j.colsurfa.2014.05.062
Wu W, Yang Y, Zhou H et al (2012) Highly efficient removal of Cu(II) from aqueous solution by using graphene oxide. Water Air Soil Pollut 224:1372. doi:10.1007/s11270-012-1372-5
Papageorgiou SK, Katsaros FK, Kouvelos EP et al (2006) Heavy metal sorption by calcium alginate beads from Laminaria digitata. J Hazard Mater 137:1765–1772. doi:10.1016/j.jhazmat.2006.05.017
Li X, Zhou H, Wu W et al (2015) Studies of heavy metal ion adsorption on chitosan/sulfydryl-functionalized graphene oxide composites. J Colloid Interface Sci 448:389–397. doi:10.1016/j.jcis.2015.02.039
Zhao G, Ren X, Gao X et al (2011) Removal of Pb(II) ions from aqueous solutions on few-layered graphene oxide nanosheets. Dalt Trans 40:10945–10952. doi:10.1039/c1dt11005e
Jia W, Lu S (2014) Few-layered graphene oxides as superior adsorbents for the removal of Pb(II) ions from aqueous solutions. Korean J Chem Eng 31:1265–1270. doi:10.1007/s11814-014-0045-z
Huiping S, Xingang L, Huaigang C, Fangqin C (2013) Theoretical and experimental study of Au(III)-containing wastewater treatment using magnetotactic bacteria. Desalin Water Treat 51:3864–3870. doi:10.1080/19443994.2013.781737
Deng K, Yin P, Liu X et al (2014) Modeling, analysis and optimization of adsorption parameters of Au(III) using low-cost agricultural residuals buckwheat hulls. J Ind Eng Chem 20:2428–2438. doi:10.1016/j.jiec.2013.10.023
Gardea-Torresdey JL, Tiemann KJ, Gamez G et al (2000) Reduction and accumulation of gold(III) by Medicago sativa alfalfa biomass: X-ray absorption spectroscopy, pH, and temperature dependence. Environ Sci Technol 34:4392–4396. doi:10.1021/es991325m
Acknowledgements
The support of Boğaziçi University Research Fund (ref: research grant 9940) for this project is kindly acknowledged.
Author information
Authors and Affiliations
Corresponding author
Ethics declarations
Conflict of Interest
The authors declare that they have no conflict of interest.
Rights and permissions
About this article
Cite this article
Duru, İ., Ege, D. & Kamali, A.R. Graphene oxides for removal of heavy and precious metals from wastewater. J Mater Sci 51, 6097–6116 (2016). https://doi.org/10.1007/s10853-016-9913-8
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s10853-016-9913-8