Skip to main content
Log in

A green method for preparation of CNT/CS/AgNP composites and evaluation of their catalytic performance

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

In this work, a green method was employed to prepare CNT/CS/AgNP composites, and the catalytic performance of the composites was evaluated. Firstly, carbon nanotubes were modified by chitosan molecules to generate carbon nanotube/chitosan (CNT/CS) composites. Then, silver ions were absorbed and in situ reduced to Ag nanoparticles by the CNT/CS composites, forming CNT/CS/AgNP composites without any other reductants. UV–Visible spectra, Fourier transform infrared spectroscopy, X-ray diffraction, transmission electron microscopy, and thermogravimetric analysis were employed to analyze the composition, crystalline structure, morphology, and thermal stability of CNT/CS/AgNP composites. The results showed the average size of silver nanoparticles was 6 nm, and the Ag particles were uniformly distributed on the surface of carbon nanotubes. Overall, the CNT/CS/AgNP composites showed high catalytic activity for hydrogenation reduction of p-nitrophenol with a rate constant of 0.257 min−1 and an activation energy of 89.27 kJ mol−1.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9
Figure 10
Figure 11

Similar content being viewed by others

References

  1. Chung HT, Won JH, Zelenay P (2013) Active and stable carbon nanotube/nanoparticle composite electrocatalyst for oxygen reduction. Nat commun 4:1922

    Article  Google Scholar 

  2. Tammeveski L, Erikson H, Sarapuu A, Kozlova J, Ritslaid P, Sammelselg V, Tammeveski K (2012) Electrocatalytic oxygen reduction on silver nanoparticle/multi-walled carbon nanotube modified glassy carbon electrodes in alkaline solution. Electrochem Commun 20:15–18

    Article  Google Scholar 

  3. Liu CY, Hu JM (2009) Hydrogen peroxide biosensor based on the direct electrochemistry of myoglobin immobilized on silver nanoparticles doped carbon nanotubes film. Biosens Bioelectron 24(7):2149–2154

    Article  Google Scholar 

  4. Narang J, Chauhan N, Jain P, Pundir CS (2012) Silver nanoparticles/multiwalled carbon nanotube/polyaniline film for amperometric glutathione biosensor. Int J Biol Macromol 50(3):672–678

    Article  Google Scholar 

  5. Yuan W, Jiang G, Che J, Qi X, Xu R, Chang MW, Chan-Park MB (2008) Deposition of silver nanoparticles on multiwalled carbon nanotubes grafted with hyperbranched poly(amidoamine) and their antimicrobial effects. J Phys Chem C 112(48):18754–18759

    Article  Google Scholar 

  6. Mohan R, Shanmugharaj AM, Sung HR (2011) An efficient growth of silver and copper nanoparticles on multiwalled carbon nanotube with enhanced antimicrobial activity. J Biomed Mater Res B 96(1):119–126

    Article  Google Scholar 

  7. Ma PC, Tang BZ, Kim JK (2008) Effect of CNT decoration with silver nanoparticles on electrical conductivity of CNT-polymer composites. Carbon 46(11):1497–1505

    Article  Google Scholar 

  8. Fortunati E, D’angelo F, Martino S, Orlacchio A, Kenny JM, Armentano I (2011) Carbon nanotubes and silver nanoparticles for multifunctional conductive biopolymer composites. Carbon 49(7):2370–2379

    Article  Google Scholar 

  9. LeeáTan K (2001) Growth of Pd, Pt, Ag and Au nanoparticles on carbon nanotubes. J Mater Chem 11(9):2378–2381

    Article  Google Scholar 

  10. Liu Y, Tang J, Chen X, Chen W, Pang GKH, Xin JH (2006) A wet-chemical route for the decoration of CNTs with silver nanoparticles. Carbon 44(2):381–383

    Article  Google Scholar 

  11. Yang GW, Gao GY, Wang C, Xu CL, Li HL (2008) Controllable deposition of Ag nanoparticles on carbon nanotubes as a catalyst for hydrazine oxidation. Carbon 46(5):747–752

    Article  Google Scholar 

  12. Quinn BM, Dekke C, Lemay SG (2005) Electrodeposition of noble metal nanoparticles on carbon nanotubes. J Am Chem Soc 127(17):6146–6147

    Article  Google Scholar 

  13. Ma PC, Siddiqui NA, Marom G, Kim JK (2010) Dispersion and functionalization of carbon nanotubes for polymer-based nanocomposites: a review. Composites A 41(10):1345–1367

    Article  Google Scholar 

  14. Sun YP, Fu K, Lin Y, Huang W (2002) Functionalized carbon nanotubes: properties and applications. Acc Chem Res 35(12):1096–1104

    Article  Google Scholar 

  15. Balasubramanian K, Burghard M (2005) Chemically functionalized carbon nanotubes. Small 1(2):180–192

    Article  Google Scholar 

  16. Hou PX, Liu C, Cheng HM (2008) Purification of carbon nanotubes. Carbon 46(15):2003–2025

    Article  Google Scholar 

  17. Wildgoose GG, Banks CE, Compton RG (2006) Metal nanoparticles and related materials supported on carbon nanotubes: methods and applications. Small 2(2):182–193

    Article  Google Scholar 

  18. Avilés F, Cauich-Rodríguez JV, Moo-Tah L, May-Pat A, Vargas-Coronado R (2009) Evaluation of mild acid oxidation treatments for MWCNT functionalization. Carbon 47(13):2970–2975

    Article  Google Scholar 

  19. Likodimos V, Steriotis TA, Papageorgiou SK, Romanos GE, Marques RR, Rocha RP, Falaras P (2014) Controlled surface functionalization of multiwall carbon nanotubes by HNO3 hydrothermal oxidation. Carbon 69:311–326

    Article  Google Scholar 

  20. Gao G, Pan M, Vecitis CD (2015) Effect of the oxidation approach on carbon nanotube surface functional groups and electrooxidative filtration performance. J Mater Chem A 3(14):7575–7582

    Article  Google Scholar 

  21. Liu Y, Tang J, Chen X, Xin JH (2005) Decoration of carbon nanotubes with chitosan. Carbon 43:3178–3180

    Article  Google Scholar 

  22. Murugadoss A, Chattopadhyay A (2008) A ‘green’ chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 19:015603–015611

    Article  Google Scholar 

  23. Lin J, He C, Zhao Y, Zhang S (2009) One-step synthesis of silver nanoparticles/carbon nanotubes/chitosan film and its application in glucose biosensor. Sens Actuators B 137(2):768–773

    Article  Google Scholar 

  24. Hernández-Vargas J, González-Campos JB, Lara-Romero J, Prokhorov E, Luna-Bárcenas G, Aviña-Verduzco JA, González-Hernández JC (2014) Chitosan/MWCNTs-decorated with silver nanoparticle composites: dielectric and antibacterial characterization. J Appl Polym Sci 131(9):1–13

    Article  Google Scholar 

  25. Yeshchenko OA, Dmitruk IM, Alexeenko AA, Kotko AV, Verdal J, Pinchuk AO (2012) Size and temperature effects on the surface plasmon resonance in silver nanoparticles. Plasmonics 7(4):685–694

    Article  Google Scholar 

  26. Duval Malinsky M, Kelly KL, Schatz GC, Van Duyne RP (2001) Nanosphere lithography: effect of substrate on the localized surface plasmon resonance spectrum of silver nanoparticles. J Phys Chem B 105(12):2343–2350

    Article  Google Scholar 

  27. Twu YK, Chen YW, Shih CM (2008) Preparation of silver nanoparticles using chitosan suspensions. Powder Technol 185(3):251–257

    Article  Google Scholar 

  28. Wei D, Sun W, Qian W, Ye Y, Ma X (2009) The synthesis of chitosan-based silver nanoparticles and their antibacterial activity. Carbohydr Res 344(17):2375–2382

    Article  Google Scholar 

  29. Babu MG, Gunasekaran P (2009) Production and structural characterization of crystalline silver nanoparticles from Bacillus cereus isolate. Colloids Surf B 74(1):191–195

    Article  Google Scholar 

  30. Murugadoss A, Chattopadhyay A (2008) A ‘green’ chitosan–silver nanoparticle composite as a heterogeneous as well as micro-heterogeneous catalyst. Nanotechnology 19(1):015603

    Article  Google Scholar 

  31. Kweon H, Um IC, Park YH (2001) Structural and thermal characteristics of Antheraea pernyi silk fibroin/chitosan blend film. Polymer 42(15):6651–6656

    Article  Google Scholar 

  32. Carson L, Kelly-Brown C, Stewart M, Oki A, Regisford G, Luo Z, Bakhmutov VI (2009) Synthesis and characterization of chitosan–carbon nanotube composites. Mater Lett 63(6):617–620

    Article  Google Scholar 

  33. Bom D, Andrews R, Jacques D, Anthony J, Chen B, Meier MS, Selegue JP (2002) Thermogravimetric analysis of the oxidation of multiwalled carbon nanotubes: evidence for the role of defect sites in carbon nanotube chemistry. Nano Lett 2(6):615–619

    Article  Google Scholar 

  34. Vaidya MJ, Kulkarni SM, Chaudhari RV (2003) Synthesis of p-aminophenol by catalytic hydrogenation of p-nitrophenol. Org Process Res Dev 7(2):202–208

    Article  Google Scholar 

  35. Li J, Liu CY, Liu Y (2012) Au/graphene hydrogel: synthesis, characterization and its use for catalytic reduction of 4-nitrophenol. J Mater Chem 22(17):8426–8430

    Article  Google Scholar 

  36. Lu H, Yin H, Jiang T, Liu Y, Yu L (2008) Influence of support on catalytic activity of Ni catalysts in p-nitrophenol hydrogenation to p-aminophenol. Catal Commun 10(3):313–316

    Article  Google Scholar 

  37. Chiou JR, Lai BH, Hsu KC, Chen DH (2013) One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J Hazard Mater 248:394–400

    Article  Google Scholar 

  38. Hoseini SJ, Rashidi M, Bahrami M (2011) Platinum nanostructures at the liquid–liquid interface: catalytic reduction of p-nitrophenol to p-aminophenol. J Mater Chem 21(40):16170–16176

    Article  Google Scholar 

  39. Peng J, He R, Tan M, Dou Y, Wang Z, Chen GZ, Jin X (2015) Electrochemical preparation of fine powders of nickel-boron alloys in molten chlorides for magnetic hydrogenation catalysts. J Electrochem Soc 162(4):H271–H277

    Article  Google Scholar 

  40. Du Y, Chen H, Chen R, Xu N (2004) Synthesis of p-aminophenol from p-nitrophenol over nano-sized nickel catalysts. Appl Catal A 277(1):259–264

    Article  Google Scholar 

  41. Manesh KM, Gopalan AI, Lee KP, Komathi S (2010) Silver nanoparticles distributed into polyaniline bridged silica network: a functional nanocatalyst having synergistic influence for catalysis. Catal Commun 11(10):913–918

    Article  Google Scholar 

  42. Gao Y, Ding X, Zheng Z, Cheng X, Peng Y (2007) Template-free method to prepare polymer nanocapsules embedded with noble metal nanoparticles. Chem Commun 36:3720–3722

    Article  Google Scholar 

  43. Tang SC, Vongehr S, Meng XK (2010) Carbon spheres with controllable silver nanoparticle doping. J Phys Chem C 114:977–982

    Article  Google Scholar 

  44. Chiou JR, Lai BH, Hsu KC, Chen DH (2013) One-pot green synthesis of silver/iron oxide composite nanoparticles for 4-nitrophenol reduction. J Hazard Mater 248:394–400

    Article  Google Scholar 

  45. Zhang H, Duan T, Zhu W, Yao WT (2015) Natural chrysotile-based nanowires decorated with monodispersed Ag nanoparticles as a highly active and reusable hydrogenation catalyst. J Phys Chem C 119(37):21465–21472

    Article  Google Scholar 

  46. Liang M, Su R, Qi W, Yu Y, Wang L, He Z (2014) Synthesis of well-dispersed Ag nanoparticles on eggshell membrane for catalytic reduction of 4-nitrophenol. J Mater Sci 49(4):1639–1647. doi:10.1007/s10853-013-7847-y

    Article  Google Scholar 

  47. Tang J, Shi Z, Berry RM, Tam KC (2015) Mussel-inspired green metallization of silver nanoparticles on cellulose nanocrystals and their enhanced catalytic reduction of 4-nitrophenol in the presence of β-cyclodextrin. Ind Eng Chem Res 54(13):3299–3308

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (51203125), Discipline Innovation Team Project of Wuhan Textile University (201401020), and Technology Innovation Foundation of Wuhan Textile University (153002).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Junjun Peng.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Dou, Y., Liu, H., Peng, J. et al. A green method for preparation of CNT/CS/AgNP composites and evaluation of their catalytic performance. J Mater Sci 51, 5685–5694 (2016). https://doi.org/10.1007/s10853-016-9871-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9871-1

Keywords

Navigation