Journal of Materials Science

, Volume 51, Issue 13, pp 6117–6132 | Cite as

Co x Ni4−x Sb12−y Sn y skutterudites: processing and thermoelectric properties

  • Jon MackeyEmail author
  • Frederick Dynys
  • Bethany M. Hudak
  • Beth S. Guiton
  • Alp Sehirlioglu
Original Paper


N-type and p-type skutterudite samples with the composition Co x Ni4−x Sb12−y Sn y were synthesized with composition range 0 < x < 2 and 3 < y < 5. Samples were pre-processed by solidification into ingots. Skutterudite phase formation was achieved by mechanical alloying the crushed ingots. The milled powders were consolidated to dense pellets by hot pressing. Thermoelectric measurements showed limited high-temperature performance below 400 °C. Skutterudite decomposition above 250 °C was detrimental to Seebeck coefficient. The thermoelectric transport properties can be tuned by varying the Co and Sn level. The lowest lattice thermal conductivity measured was 1.0 W m−1 K−1 for the Co level of 1.5. The Seebeck coefficient was positive for Co levels >0.8 and negative otherwise. Seebeck coefficients were low, ranging from −40 to 58 µV K−1. The combination of transmission electron microscopy with electron energy loss spectroscopy and powder X-ray diffraction established that Sn can substitute on 2a and 24g sites in the skutterudite structure. Due to the low Seebeck coefficients, the alloys exhibited low figure of merits (ZT) <0.05.


Seebeck Coefficient Lattice Thermal Conductivity Total Thermal Conductivity NiSb Skutterudite Phase 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Ben Kowalski, Tom Sabo, Serene Farmer, Ray Babuder, and Dereck Johnson from NASA Glenn Research Center and Case Western Reserve University for help with the experimental portion of this work. The authors would also like to thank Sabah Bux and Jean-Pierre Fleurial from NASA JPL for helpful discussions and assistance with hot pressing some samples. This research was supported in part by the Office of Basic Energy Sciences, Materials Sciences and Engineering Division, U.S. Department of Energy. Funding for this work was provided by funding source NASA/USRA 04555-004, the NASA Radioisotope Power System Program, and by NASA Kentucky under NASA Award No: NNX10AL96H.


  1. 1.
    Sherman B, Heikes R, Ure R (1960) Calculation of efficiency of thermoelectric devices. J Appl Phys 31:1–16CrossRefGoogle Scholar
  2. 2.
    Nolas G, Morelli D, Tritt T (1999) Skutterudites: a phonon-glass-electron crystal approach to advanced thermoelectric energy conversion applications. Annu Rev Mater Sci 29:89–116CrossRefGoogle Scholar
  3. 3.
    Ackermann J, Wold A (1977) The preparation and characterization of the cobalt skutterudites CoP3, CoSb3, CoAs3. J Phys Chem Solids 38:1013–1016CrossRefGoogle Scholar
  4. 4.
    Lyons A, Gruska R, Case C, Subbarao S, Wold A (1978) The preparation and characterization of some skutterudite related compounds. Mater Res Bull 13:125–128CrossRefGoogle Scholar
  5. 5.
    Morelli D, Meisner G, Chen B, Hu S, Uher C (1997) Cerium filling and doping of cobalt triantimonide. Phys Rev B 56:7376–7383CrossRefGoogle Scholar
  6. 6.
    Fleurial J, Caillat T, Borshchevsky A (1997) Skutterudites: an update. In: Proceedings of the XVI international conference on thermoelectrics, 26–29 August 1997Google Scholar
  7. 7.
    Rull-Bravo M, Moure A, Fernandez JF, Martin-Gonzalez M (2015) Skutterudites as thermoelectric materials: revisited. RSC Adv 5:41653CrossRefGoogle Scholar
  8. 8.
    Aleksandrov KS, Beznosikov BV (2007) Crystal chemistry and prediction of compounds with a structure of skutterudite type. Crystallogr Rep 52:28–36CrossRefGoogle Scholar
  9. 9.
    Dong Y, Puneet P, Tritt T, Martin J, Nolas G (2012) High temperature thermoelectric properties of p-type skutterudites BaxYbyCo4-zFezSb12. J Appl Phys 112:083718CrossRefGoogle Scholar
  10. 10.
    Eilertsen J, Rouvimov S, Subramanian M (2012) Rattler-seeded InSb nanoinclusions from metastable indium-filled InCoSb skutterudites for high-performance thermoelectrics. Acta Mater 60:2178–2185CrossRefGoogle Scholar
  11. 11.
    Nolas G, Slack G, Morelli D, Tritt T, Ehrlich A (1996) The effect of rare earth filling on the lattice thermal conductivity of skutterudites. J Appl Phys 79:4002–4008CrossRefGoogle Scholar
  12. 12.
    Chen L, Tang X, Goto T, Hirai T (2000) Synthesis of filled skutterudite compounds: BayFexCo4-xSb12. J Mater Res 15:2276–2279CrossRefGoogle Scholar
  13. 13.
    Qiu P, Yang J, Liu R, Shi X, Huang X, Snyder G, Zhang W, Chen L (2011) High-temperature electrical and thermal transport properties of fully filled skutterudites RFe4Sb12 (R = Ca, Sr, Ba, La, Ce, Pr, Nd, Eu, and Yb). J Appl Phys 109:063713CrossRefGoogle Scholar
  14. 14.
    Li H, Tang X, Zhang Q, Uher C (2009) High performance InxCeyCo4Sb12 thermoelectric materials with in situ forming nanostructured InSb phase. App Phys Lett 94:102114CrossRefGoogle Scholar
  15. 15.
    Shi X, Yang J, Salvador J, Chi M, Cho J, Wang H, Bai S, Yang J, Zhang W, Chen L (2011) Multi-filled skutterudites: high thermoelectric figure of merit through separately optimizing electrical and thermal transports. J Am Chem Soc 133:7837–7846CrossRefGoogle Scholar
  16. 16.
    Zhang L, Grytsiv A, Rogl P, Bauer E, Zehetbauer M (2009) High thermoelectric performance of triple-filled n-type skutterudites (Sr, Ba, Yb)yCo4Sb12. J Phys D Appl Phys 42:225405CrossRefGoogle Scholar
  17. 17.
    Rogl G, Grytsiv A, Rogl P, Peranio N, Bauer E, Zehetbauer M, Eibl O (2014) n-Type skutterudites (R, Ba, Yb)yCo4Sb12 (R = Sr, La, Mn, DD, SrMm, SrDD) approaching ZT = 2.0. Acta Mater 63:30–43CrossRefGoogle Scholar
  18. 18.
    Tang X, Zhang Q, Chen L, Goto T, Hirai T (2005) Synthesis and thermoelectric properties of p-type and n-type filled skutterudites RyMxCo4-xSb12. J Appl Phys 97:093712CrossRefGoogle Scholar
  19. 19.
    Rogl G, Grystiv A, Rogl P, Bauer E, Zehetbauer M (2011) A new generation of p-type didymium skutterudites with high ZT. Intermetallics 19:546–555CrossRefGoogle Scholar
  20. 20.
    Rogl G, Grytsiv A, Rogl P, Bauer E, Kerber MB, Zehetbauer M, Puchegger S (2010) Multifilled nanocrystalline p-type didymium—skutterudites with ZT > 1.2. Intermetallics 18:2435–2444CrossRefGoogle Scholar
  21. 21.
    Chi H, Kim H, Thomas J, Su X, Stackhouse S, Kaviany M, Van der Ven A, Tang X, Uher C (2012) Configuring pnictogen rings in skutterudites for low phonon conductivity. Phys Rev B 86:195209CrossRefGoogle Scholar
  22. 22.
    Bauer E, Berger St, Della Mea M, Hilscher G, Michor H, Paul Ch (2003) Filled skutterudites: formation, ground state properties and thermoelectric features. Acta Phys Pol B 34:595–608Google Scholar
  23. 23.
    Korenstein R, Soled S, Wold A, Collin G (1977) Preparation and characterization of the skutterudite-related phases CoGe1.5S1.5 and CoGe1.5Se1.5. Inorg Chem 16:2344–2346CrossRefGoogle Scholar
  24. 24.
    Dong Y, Wei K, Nolas GS (2013) Transport properties of partially filled skutterudite derivatives Ce0.13Co4Ge6Se6 and Yb0.14Co4Ge6Se6. Phys Rev B 87:195203CrossRefGoogle Scholar
  25. 25.
    Grytsiv A, Rogl P, Berger St, Paul Ch, Michor H, Bauer E, Hilscher G, Godart C, Knoll P, Musso M, Lottermoser W, Saccone A, Ferro R, Roisnel T, Noel H (2002) A novel skutterudite phase in the Ni-Sb-Sn system: phase equilibria and physical properties. J Phys Condens Matter 14:7017–7090CrossRefGoogle Scholar
  26. 26.
    Berger St, Paul Ch, Michor H, Bauer E, Hilscher G, Grytsiv A, Rogl P (2002) Crystal structure and thermoelectric properties of novel skutterudite EpyNi4Sb12-xSnx with Ep = Sn, Eu, and Yb. In: 21st International conference on thermoelectrics, vol 2. pp 48–51Google Scholar
  27. 27.
    Zevalkink A, Star K, Aydemir U, Snyder J, Fleurial J-P, Bux S, Vo T, von Allmen P (2015) Electronic structure and thermoelectric properties of pnictogen-substituted ASn1.5Te1.5 (A = Co, Rh, Ir) skutterudites. J Appl Phys 118:035107CrossRefGoogle Scholar
  28. 28.
    Hui S, Nielsen M, Homer M, Medlin D, Tobola J, Salvador J, Heremans J, Pipe K, Uher C (2014) Influence of substituting Sn for Sb on the thermoelectric transport properties of CoSb3-based skutterudites. J Appl Phys 115:103704CrossRefGoogle Scholar
  29. 29.
    Mishra R, Kroupa A, Terzieff P, Ipser H (2012) Thermochemistry of liquid Ni-Sb-Sn alloys. Thermochim Acta 536:68–73CrossRefGoogle Scholar
  30. 30.
    Mishra R, Kroupa A, Zemanova A, Ipser H (2013) Phase equilibria in the Sn-rich corner of the Ni-Sb-Sn system. J Electron Mater 42:646–653CrossRefGoogle Scholar
  31. 31.
    Mackey J, Dynys F, Sehirlioglu A (2014) Uncertainty analysis of common Seebeck and electrical resistivity measurement systems. Rev Sci Instrum 85:085119CrossRefGoogle Scholar
  32. 32.
    May A, Snyder J (2012) Introduction to modeling thermoelectric transport at high temperatures. Materials Preparation and Characterization in Thermoelectrics, Section 1. CRC Press, Boca Raton, p 11Google Scholar
  33. 33.
    Fu L, Yang J, Xiao Y, Peng J, Liu M, Luo Y, Li G (2013) AgSbTe2 nanoinclusion in Yb0.2Co4Sb12 for high performance thermoelectrics. Intermetallics 43:79–84CrossRefGoogle Scholar
  34. 34.
    Cho J, Ye Z, Tessema M, Waldo R, Salvador J, Yang J, Cai W, Wang H (2012) Thermoelectric properties of p-type skutterudites YbxFe3.5Ni0.5Sb12 (0.8 < x < 1). Acta Mater 60:2104–2110CrossRefGoogle Scholar
  35. 35.
    Qiu Y, Xi L, Shi X, Qiu P, Zhang W, Chen L, Salvador J, Cho J, Yang J, Chien Y, Chen S, Tang Y, Snyder J (2013) Charge-compensated compound defects in Ga-containing thermoelectric skutterudites. Adv Funct Mater 23:3194–3203CrossRefGoogle Scholar
  36. 36.
    Joo G, Shin D, Kim I (2014) Thermoelectric properties of double-filled p-type La1-zYbzFe4-xCoxSb12 skutterudites. J Electron Mater 44:1383–1387CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Materials Science and EngineeringCase Western Reserve UniversityClevelandUSA
  2. 2.NASA Glenn Research CenterClevelandUSA
  3. 3.Department of ChemistryUniversity of KentuckyLexingtonUSA
  4. 4.Materials Science and Technology DivisionOak Ridge National LaboratoryOak RidgeUSA

Personalised recommendations