Skip to main content

Advertisement

Log in

Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

Improving upconversion luminescence efficiency of lanthanide-doped nanocrystals is always a hot topic for scientists because of its very important application in photonics, photovoltaics, biological imaging, security printing, and therapeutics. Two-color laser field has shown to be a well-established strategy to further improve the upconversion luminescence efficiency. Here, we first propose a two-color laser field combining the 850 and 980 nm lasers to improve the green and red upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals. In this work, an important advantage for our strategy is that the population is directly pumped to the radiation energy level of the upconversion luminescence by a cooperation excitation process, but not the spontaneous decay from other higher energy levels, and so the higher luminescence enhancement efficiency can be obtained. These studies also provide a clear physical picture for the physical control mechanism of the upconversion luminescence efficiency improvement, which can pave a way to properly design the laser fields in the future study of upconversion luminescence generation and control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7

Similar content being viewed by others

References

  1. Miller RC (1964) Optical second harmonic generation in piezoelectric crystals. Appl Phys Lett 5(1):17–19

    Article  Google Scholar 

  2. Rentzepis PM, Pao YH (1964) Laser-induced optical second harmonic generation in organic crystals. Appl Phys Lett 5(8):156–158

    Article  Google Scholar 

  3. Shah J, Damen TC, Deveaud B, Block D (1987) Subpicosecond luminescence spectroscopy using sum frequency generation. Appl Phys Lett 50(19):1307–1309

    Article  Google Scholar 

  4. Shah J (1988) Ultrafast luminescence spectroscopy using sum frequency generation. IEEE J Quantum Electron 24(2):276–288

    Article  Google Scholar 

  5. Pawlicki M, Collins HA, Denning RG, Anderson HL (2009) Two-photon absorption and the design of two-photon dyes. Angew Chem Int Ed 48(18):3244–3266

    Article  Google Scholar 

  6. Denk W, Strickler JH, Webb WW (1990) Two-photon laser scanning fluorescence microscopy. Science 248(4951):73–76

    Article  Google Scholar 

  7. Bhawalkar JD, He GS, Prasad PN (1996) Nonlinear multiphoton processes in organic and polymeric materials. Rep Prog Phys 59(9):1041

  8. He GS, Tan L, Zheng Q, Prasad PN (2008) Multiphoton absorbing materials: molecular designs, characterizations, and applications. Chem Rev 108(4):1245–1330

    Article  Google Scholar 

  9. Delysse S, Filloux P, Dumarcher V, Fiorini C, Nunzi J (1998) Multiphoton absorption in organic dye solutions. Opt Mater 9(1):347–351

    Article  Google Scholar 

  10. Bloembergen N (1959) Solid state infrared quantum counters. Phys Rev Lett 2(3):84

    Article  Google Scholar 

  11. Scheps R (1996) Upconversion laser processes. Prog Quant Electron 20(4):271–358

    Article  Google Scholar 

  12. Wright JC (1976) Up-conversion and excited state energy transfer in rare-earth doped materials Radiationless processes in molecules and condensed phases. Springer, pp 239–295

  13. Nilsson J, Clarkson WA, Selvas R, Sahu JK, Turner PW, Alam S, Grudinin AB (2004) High-power wavelength-tunable cladding-pumped rare-earth-doped silica fiber lasers. Opt Fiber Technol 10(1):5–30

    Article  Google Scholar 

  14. Wintner E, Sorokin E, Sorokina IT (2001) Recent developments in diode-pumped ultrashort pulse solid-state lasers. Laser Phys 11(11):1193–1200

    Google Scholar 

  15. Zhou P, Wang X, Ma Y, Lü H, Liu Z (2012) Review on recent progress on mid-infrared fiber lasers. Laser Phys 22(11):1744–1751

    Article  Google Scholar 

  16. Corma A, Atienzar P, Garcia H, Chane-Ching J (2004) Hierarchically mesostructured doped CeO2 with potential for solar-cell use. Nat Mater 3(6):394–397

    Article  Google Scholar 

  17. Trupke T, Green MA, Würfel P (2002) Improving solar cell efficiencies by up-conversion of sub-band-gap light. J Appl Phys 92(7):4117–4122

    Article  Google Scholar 

  18. Wang HQ, Batentschuk M, Osvet A, Pinna L, Brabec CJ (2011) Rare-earth ion doped up-conversion materials for photovoltaic applications. Adv Mater 23(22–23):2675–2680

    Article  Google Scholar 

  19. Ma D, Wu Y, Zuo X (2005) Rare earth doped β-diketone complexes as promising high-density optical recording materials for blue optoelectronics. Mater Lett 59(28):3678–3681

    Article  Google Scholar 

  20. Zhang C, Zhou HP, Liao LY, Feng W, Sun W, Li ZX, Xu CH, Fang CJ, Sun LD, Zhang YW (2010) Luminescence modulation of ordered upconversion nanopatterns by a photochromic diarylethene: rewritable optical storage with nondestructive readout. Adv Mater 22(5):633–637

    Article  Google Scholar 

  21. Downing E, Hesselink L, Ralston J, Macfarlane R (1996) A three-color, solid-state, three-dimensional display. Science 273(5279):1185–1189

    Article  Google Scholar 

  22. Deng R, Qin F, Chen R, Huang W, Hong M, Liu X (2015) Temporal full-colour tuning through non-steady-state upconversion. Nat Nanotechnol 10(3):237–242

    Article  Google Scholar 

  23. Anh TK, Loc DX, Huong TT, Vu N, Minh Le Quoc (2011) Luminescent nanomaterials containing rare earth ions for security printing. Int J Nanotechnol 8(3–5):335–346

    Article  Google Scholar 

  24. Meruga JM, Cross WM, May PS, Luu Q, Crawford GA, Kellar JJ (2012) Security printing of covert quick response codes using upconverting nanoparticle inks. Nanotechnology 23(39):395201

    Article  Google Scholar 

  25. Wang F, Tan WB, Zhang Y, Fan X, Wang M (2006) Luminescent nanomaterials for biological labelling. Nanotechnology 17(1):R1

    Article  Google Scholar 

  26. Wolska E, Kaszewski J, Kiełbik P, Grzyb J, Godlewski MM, Godlewski M (2014) Rare earth activated ZnO nanoparticles as biomarkers. Opt Mater 36(10):1655–1659

    Article  Google Scholar 

  27. Kumar R, Nyk M, Ohulchanskyy TY, Flask CA, Prasad PN (2009) Combined optical and MR bioimaging using rare earth ion doped NaYF4 nanocrystals. Adv Funct Mater 19(6):853–859

    Article  Google Scholar 

  28. Zhou J, Sun Y, Du X, Xiong L, Hu H, Li F (2010) Dual-modality in vivo imaging using rare-earth nanocrystals with near-infrared to near-infrared (NIR-to-NIR) upconversion luminescence and magnetic resonance properties. Biomaterials 31(12):3287–3295

    Article  Google Scholar 

  29. Antic-Fidancev E, Hölsä J, Lastusaari M, Lupei A (2001) Dopant-host relationships in rare-earth oxides and garnets doped with trivalent rare-earth ions. Phys Rev B 64(19):195108

    Article  Google Scholar 

  30. Heer S, Kömpe K, Güdel HU, Haase M (2004) Highly efficient multicolour upconversion emission in transparent colloids of lanthanide-doped NaYF4 nanocrystals. Adv Mater 16(23–24):2102–2105

    Article  Google Scholar 

  31. Wang F, Liu X (2008) Upconversion multicolor fine-tuning: visible to near-infrared emission from lanthanide-doped NaYF4 nanoparticles. J Am Chem Soc 130(17):5642–5643

    Article  Google Scholar 

  32. Wang F, Xue X, Liu X (2008) Multicolor tuning of (Ln, P)-doped YVO4 nanoparticles by single-wavelength excitation. Angew Chem Int Edit 47(5):906–909

    Article  Google Scholar 

  33. Bai X, Song H, Pan G, Lei Y, Wang T, Ren X, Lu S, Dong B, Dai Q, Fan L (2007) Size-dependent upconversion luminescence in Er3+/Yb3+-codoped nanocrystalline yttria: saturation and thermal effects. J Phys Chem C 111(36):13611–13617

    Article  Google Scholar 

  34. Hao J, Zhang Y, Wei X (2011) Electric-induced enhancement and modulation of upconversion photoluminescence in epitaxial BaTiO3: Yb/Er thin films. Angew Chem Int Ed 50(30):6876–6880

    Article  Google Scholar 

  35. Liu Y, Wang D, Shi J, Peng Q, Li Y (2013) Magnetic tuning of upconversion luminescence in lanthanide-doped bifunctional nanocrystals. Angew Chem Int Ed 52(16):4366–4369

    Article  Google Scholar 

  36. Franzò G, Iacona F, Vinciguerra V, Priolo F (2000) Enhanced rare earth luminescence in silicon nanocrystals. Mater Sci Eng, B 69:335–339

    Article  Google Scholar 

  37. Zhang S, Lu C, Jia T, Qiu J, Sun Z (2013) Coherent phase control of resonance-mediated two-photon absorption in rare-earth ions. Appl Phys Lett 103(19):194104

    Article  Google Scholar 

  38. Zhang S, Xu S, Ding J, Lu C, Jia T, Qiu J, Sun Z (2014) Single and two-photon fluorescence control of Er3+ ions by phase-shaped femtosecond laser pulse. Appl Phys Lett 104(1):014101

    Article  Google Scholar 

  39. Yao Y, Zhang S, Zhang H, Ding J, Jia T, Qiu J, Sun Z (2014) Laser polarization and phase control of up-conversion fluorescence in rare-earth ions. Sci Rep-UK 4:7295

    Article  Google Scholar 

  40. Zhang S, Yao Y, Shuwu X, Liu P, Ding J, Jia T, Qiu J, Sun Z (2015) Realizing up-conversion fluorescence tuning in lanthanide-doped nanocrystals by femtosecond pulse shaping method. Sci Rep-UK 5:13337

    Article  Google Scholar 

  41. Gainer CF, Joshua GS, Romanowski M. Toward the use of two-color emission control in upconverting NaYF4: Er3+, Yb3+ nanoparticles for biomedical imaging SPIE BiOS, 2012. International Society for Optics and Photonics, p 82310I 1-8

  42. Gainer CF, Joshua GS, De Silva CR, Romanowski M (2011) Control of green and red upconversion in NaYF4: Yb3+, Er3+ nanoparticles by excitation modulation. J Mater Chem 21(46):18530–18533

    Article  Google Scholar 

  43. Shang X, Chen P, Cheng W, Zhou K, Ma J, Feng D, Zhang S, Sun Z, Qiu J, Jia T (2014) Fine tunable red-green upconversion luminescence from glass ceramic containing 5% Er3+: NaYF4 nanocrystals under excitation of two near infrared femtosecond lasers. J Appl Phys 116(6):063101

    Article  Google Scholar 

  44. Chen P, Yu S, Xu B, Wang J, Sang X, Liu X, Qiu J (2014) Enhanced upconversion luminescence in NaYF4: er nanoparticles with multi-wavelength excitation. Mater Lett 128:299–302

    Article  Google Scholar 

  45. Chen Z, Zhang X, Zeng S, Liu Z, Ma Z, Dong G, Zhou S, Liu X, Qiu J (2015) Highly efficient up-conversion luminescence in BaCl2: Er3+ phosphors via simultaneous multiwavelength excitation. Appl Phys Express 8(3):032301

    Article  Google Scholar 

  46. Yao Y, Xu C, Zheng Y, Yang C, Liu P, Ding J, Jia T, Qiu J, Zhang S, Sun Z (2016) Enhancing up-conversion luminescence of Er3+/Yb3+-codoped glass by two-color laser field excitation. RSC Adv 6(5):3440–3445

    Article  Google Scholar 

Download references

Acknowledgements

This work was partly supported by National Natural Science Foundation of China (No. 51132004 and No. 11474096) and Science and Technology Commission of Shanghai Municipality (No. 14JC1401500). We acknowledge the support of the NYU-ECNU Institute of Physics at NYU Shanghai.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Shian Zhang or Zhenrong Sun.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, Y., Xu, C., Zheng, Y. et al. Improving upconversion luminescence efficiency in Er3+-doped NaYF4 nanocrystals by two-color laser field. J Mater Sci 51, 5460–5468 (2016). https://doi.org/10.1007/s10853-016-9849-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9849-z

Keywords

Navigation