Skip to main content
Log in

MnO2-doped (Ca0.4,Sr0.6)Bi4Ti4O15 high-temperature piezoelectric ceramics with improved thermal stability

  • Original Paper
  • Published:
Journal of Materials Science Aims and scope Submit manuscript

Abstract

We investigated the influence of MnO2 doping on the electric properties and thermal stability of (Ca0.4,Sr0.6)Bi4Ti4O15 high-temperature piezoelectric ceramics. The XRD patterns reveal that Curie temperature (T C) of the CSBTM-x ceramics slightly changes with increasing MnO2 content due to the slightly distorted lattice. The temperature dependence of inverse dielectric constant (1/ε r) reveals that the ceramics undergo a first-order phase transition. MnO2 doping with proper content (1, 2, 3 mol%) can significantly lower dielectric loss (tanδ) and enhance piezoelectric coefficient (d 33) of the CSBTM-x ceramics. The dependence of annealing temperature on d 33 indicates that the thermal stability becomes lower with increasing MnO2 content (x), and the CSBTM-x ceramics doped with MnO2 at low concentrations (x is less than 4) have good thermal stability. Optimal piezoelectric properties of the ceramics with 4 mol% MnO2 additive (CSBTM-4) are obtained: d 33 = 23.8 pC/N, k p = 0.075, Q m = 3221, and T C = 626 °C. The CSBTM-2 ceramics have excellent thermal stability with good dielectric and piezoelectric properties at 300 °C: d 33 = 20.8 pC/N, (d 33T  − d 33RT )/d 33RT  = −0.95 %, and tanδ = 0.00475 at 1 MHz. The dielectric and piezoelectric properties as a function of MnO2 content (x) indicate that the introduction of Mn ions into the CSBTM-x ceramics produces both “soft” and “hard” doping effects. The d 33 of CSBTM-0, 2, 4, and 8 ceramics slightly decreases (less than 2 %) when the annealing temperature is below about half of the T C (300 °C), which is in accordance with the fact that the operating temperature of piezoelectric ceramics in sensors or detectors seldom exceeds about half of T C of the ceramics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8
Figure 9

Similar content being viewed by others

References

  1. Takeuchi T, Tani T, Saito Y (2000) Unidirectionally textured CaBi4Ti4O15 ceramics by the reactive templated grain growth with an extrusion. Jpn J Appl Phys 39:5577–5580

    Article  Google Scholar 

  2. Mercurio JP, Souirti A, Manier M, Frit B (1992) Phase transitions and dielectric properties in some compounds with bismuth oxide layer structure. Mater Res Bull 27:123–128

    Article  Google Scholar 

  3. Oka H, Hirose M, Tsukada T, Watanabe Y, Nomura T (2000) Thickness-shear vibration mode characteristics of SrBi4Ti4O15-based ceramics. Jpn J Appl Phys 39:5613–5615

    Article  Google Scholar 

  4. Subbarao EC (1962) A family of ferroelectric bismuth compounds. J Phys Chem Solids 23:665–676

    Article  Google Scholar 

  5. Subbarao EC (1962) Crystal chemistry of mixed bismuth oxides with layer-type structure. J Am Ceram Soc 45:166–169

    Article  Google Scholar 

  6. Newnham RE, Wolfe RW, Dorrian JF (1971) Structural basis of ferroelectricity in the bismuth titanate family. Mater Res Bull 6:1029–1039

    Article  Google Scholar 

  7. Hirose M, Suzuki T, Oka H, Itakura K (1999) Piezoelectric properties of SrBi4Ti4O15-based ceramics. Jpn J Appl Phys 38:5561–5563

    Article  Google Scholar 

  8. Kimura M, Sawada T, Ando A, Sakabe Y (1999) Energy trapping characteristics of bismuth layer structured compound CaBi4Ti4O15. Jpn J Appl Phys 38:5557–5560

    Article  Google Scholar 

  9. Tanwar A, Verma M, Gupta V, Sreenivas K (2011) A-site substitution effect of strontium on bismuth layered CaBi4Ti4O15 ceramics on electrical and piezoelectric properties. Mater Chem Phys 130:95–103

    Article  Google Scholar 

  10. Li G, Zheng L, Yin Q, Jiang B, Cao W (2005) Microstructure and ferroelectric properties of MnO2-doped bismuth-layer (Ca, Sr)Bi4Ti4O15 ceramics. J Appl Phys 98:064108

    Article  Google Scholar 

  11. Yokosuka M (2002) Dielectric and piezoelectric properties of Mn-modified Bi4CaTi4O15 based ceramics. Jpn J Appl Phys 41:7123–7126

    Article  Google Scholar 

  12. Islam MS, Kano J, Yin QR, Kojima S (2012) Doping effects on dynamical physical properties of Ca0.6,Sr0.4Bi4Ti4O15 ferroelectric ceramics with layered-perovskite structure. J Electroceram 28:89–94

    Article  Google Scholar 

  13. Sharma N, Ling CD, Wrighter GE, Chen PY, Kennedy BJ, Lee PL (2007) Three-layer Aurivillius phases containing magnetic transition metal cations: Bi2−x Sr2+x (Nb, Ta)2+x M1−x O12, M = Ru4+, Ir4+, Mn4+, x ≈ 0.5. J Solid State Chem 180:370–376

    Article  Google Scholar 

  14. Henriques EI, Kim HJ, Haluska MS, Edwards DD, Misture ST (2007) Solid solubility and electrical conduction mechanisms in 3-layer Aurivillius ceramics. Solid State Ionics 178:1175–1179

    Article  Google Scholar 

  15. Wang CM, Wang JF (2006) High performance Aurivillius phase sodium-potassium bismuth titanate lead-free piezoelectric ceramics with lithium and cerium modification. Appl Phys Lett 89:202905

    Article  Google Scholar 

  16. Blake SM, Falconer MJ, McCreedy M, Lightfoot P (1997) Cation disorder in ferroelectric Aurivillius phases of the type Bi2ANb2O9 (A = Ba, Sr, Ca). J Mater Chem 7:1609–1613

    Article  Google Scholar 

  17. Yan HX, Li CG, Zhou JG, Zhu WM, He LX, Song YX, Yu YH (2002) Influence of sintering temperature on the properties of high Tc bismuth layer structure ceramics. Mater Sci Eng B 88:62–67

    Article  Google Scholar 

  18. Liu H, Nie R, Yue Y, Zhang Q, Chen Q, Zhu JG, Yu P, Xiao DQ, Wang C, Wang X (2015) Effect of MnO2 doping on piezoelectric, dielectric and ferroelectric properties of PNN–PZT ceramics. Ceram Int 41:11359–11364

    Article  Google Scholar 

  19. Zheng L, Li G, Zhang W, Chen D, Yin Q (2003) The structure and piezoelectric properties of (Ca1−x Sr x )Bi4Ti4O15 ceramics. Mater Sci Eng B 99:363–365

    Article  Google Scholar 

  20. Suárez DY, Reaney IM, Lee WE (2001) Relation between tolerance factor and T c in Aurivillius compounds. J Mater Res 16:3139–3149

    Article  Google Scholar 

  21. Shimakawa Y, Kubo Y, Nakagawa Y, Goto S, Kamiyama T, Asano H, Izumi F (2000) Crystal structure and ferroelectric properties of ABi2Ta2O9 (A = Ca, Sr, and Ba). Phys Rev B 61:6559–6564

    Article  Google Scholar 

  22. Shimakawa Y, Kubo Y, Tauchi Y, Kamiyama T, Asano H, Izumi F (2000) Structural distortion and ferroelectric properties of SrBi2(Ta1−x Nb x )2O9. Appl Phys Lett 77:2749–2751

    Article  Google Scholar 

  23. Shimakawa Y, Kubo Y, Nakagawa Y, Kamiyama T, Asano H, Izumi F (1999) Crystal structures and ferroelectric properties of SrBi2Ta2O9 and Sr0.8Bi2.2Ta2O9. Appl Phys Lett 74:1904–1906

    Article  Google Scholar 

  24. Sivakumar T, Itoh M (2011) Ferroelectric phase transitions in new Aurivillius oxides: Bi2+2x Sr1−2x Nb2−x Sc x O9. J Mater Chem 21:10865–10870

    Article  Google Scholar 

  25. Wang CM, Zhao L, Wang JF, Zheng LM, Du J, Zhao ML, Wang CL (2009) Cerium-modified Aurivillius-type sodium lanthanum bismuth titanate with enhanced piezoactivities. Mater Sci Eng B 163:179–183

    Article  Google Scholar 

  26. Yan H, Zhang H, Zhang Z, Ubic R, Reece MJ (2006) B-site donor and acceptor doped Aurivillius phase Bi3NbTiO9 ceramics. J Eur Ceram Soc 26:2785–2792

    Article  Google Scholar 

  27. Nie R, Liu H, Yue Y, Zhang Q, Chen Q, Zhu JG, Yu P, Xiao DQ (2016) Relaxor behavior of PNN–PZT-based ceramics. Manuscript in preparation

  28. Yu CS, Hsieh HL (2005) Piezoelectric properties of Pb(Ni1/3,Sb2/3)O3–PbTiO3–PbZrO3 ceramics modified with MnO2 additive. J Eur Ceram Soc 25:2425–2427

    Article  Google Scholar 

  29. Yoo J, Lee S (2009) Piezoelectric properties of MnO2 doped low temperature sintering Pb(Mn1/3Nb2/3)O3–Pb(Ni1/3Nb2/3)O3–Pb(Zr0.50Ti0.50)O3 ceramics. J Electroceram 23:432–436

    Article  Google Scholar 

  30. Zhang Q, Zhang Y, Yang T, Yao X (2014) High antiferroelectric stability and large electric field–induced strain in MnO2-doped Pb0.97La0.02-(Zr0.63Sn0.26Ti0.11)O3 ceramics. J Intell Mater Syst Struct 25:501–505

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (No. 51332003 and 61201064).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hong Liu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 107 kb)

Supplementary material 2 (DOCX 547 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nie, R., Chen, Q., Liu, H. et al. MnO2-doped (Ca0.4,Sr0.6)Bi4Ti4O15 high-temperature piezoelectric ceramics with improved thermal stability. J Mater Sci 51, 5104–5112 (2016). https://doi.org/10.1007/s10853-016-9813-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10853-016-9813-y

Keywords

Navigation