Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition


SnO2 microfibers were prepared using a newly developed centrifugal spinning technology with subsequent thermal treatment. The as-prepared SnO2 microfibers were further treated with chemical vapor deposition (CVD) of acetylene using different durations of 30, 60, and 90 min. The surfaces of the CVD-treated SnO2 microfibers are covered with thin carbon layers, and the surface nanoparticles on the SnO2 microfibers were reduced by carbon, producing nano-sized Sn/C whiskers grafted on the backbones. The X-ray diffraction, scanning electron microscopy, and cyclic voltammetry results demonstrate that longer CVD coating duration promotes the formation of Sn/C whiskers on the SnO2 microfibers. The thin carbon coating layers help stabilize the solid electrolyte interface formation while the grafted Sn/C whiskers facilitate better electrolyte–electrode contact. Hence, the CVD-treated SnO2 microfibers exhibit higher initial capacities than the pristine SnO2 microfibers, as well as enhanced capacity retentions after cycling. The results suggest that centrifugal spinning is a promising approach to produce fibrous electrode materials in a rapid and mass production fashion, and the CVD coating process is an effective method to improve the electrochemical performance of the SnO2-based electrode materials.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8


  1. 1.

    Ji L, Lin Z, Alcoutlabi M, Zhang X (2011) Recent developments in nanostructured anode materials for rechargeable lithium-ion batteries. Energy Environ Sci 4:2682–2699

    Article  Google Scholar 

  2. 2.

    Xue L, Fu K, Li Y, Xu G, Lu Y, Zhang S, Toprakci O, Zhang X (2013) Si/C composite nanofibers with stable electric conductive network for use as durable lithium-ion battery anode. Nano Energy 2:361–367

    Article  Google Scholar 

  3. 3.

    Li Y, Sun Y, Xu G, Lu Y, Zhang S, Xue L, Jur JS, Zhang X (2014) Tuning electrochemical performance of Si-based anodes for lithium-ion batteries by employing atomic layer deposition alumina coating. J Mater Chem A 2:11417

    Article  Google Scholar 

  4. 4.

    Zhang S, Lin Z, Ji L, Li Y, Xu G, Xue L, Li S, Lu Y, Toprakci O, Zhang X (2012) Cr-doped Li2MnSiO4/carbon composite nanofibers as high-energy cathodes for Li-ion batteries. J Mater Chem 22:14661–14666

    Article  Google Scholar 

  5. 5.

    Wang LP, Yu L, Wang X, Srinivasan M, Xu ZJ (2015) Recent developments in electrode materials for sodium-ion batteries. J Mater Chem A 3:9353–9378

    Article  Google Scholar 

  6. 6.

    Yabuuchi N, Kubota K, Dahbi M, Komaba S (2014) Research development on sodium-ion batteries. Chem Rev 114:11636–11682

    Article  Google Scholar 

  7. 7.

    Slater MD, Kim D, Lee E, Johnson CS (2013) Sodium-ion batteries. Adv Funct Mater 23:947–958

    Article  Google Scholar 

  8. 8.

    Ge P, Fouletier M (1988) Electrochemical intercalation of sodium in graphite. Solid State Ionics 30:1172–1175

    Article  Google Scholar 

  9. 9.

    Alcántara R, Jiménez Mateos JM, Tirado JL (2002) Negative electrodes for lithium- and sodium-ion batteries obtained by heat-treatment of petroleum cokes below 1000°C. J Electrochem Soc 149:A201–A205

    Article  Google Scholar 

  10. 10.

    Thomas P, Ghanbaja J, Billaud D, Poincare H, Nancy I (1999) Electrochemical insertion of sodium in pitch-based carbon fibres in comparison with graphite in NaClO4–ethylene carbonate electrolyte. Carbon 45:423–430

    Google Scholar 

  11. 11.

    Stevens DA, Dahn JR (2001) The mechanisms of lithium and sodium insertion in carbon materials. J Electrochem Soc 148:A803–A811

    Article  Google Scholar 

  12. 12.

    Alcántara R, Jiménez-Mateos JM, Lavela P, Tirado JL (2001) Carbon black: a promising electrode material for sodium-ion batteries. Electrochem Commun 3:639–642

    Article  Google Scholar 

  13. 13.

    Wang H, Wu Z, Meng F, Ma D, Huang X, Wang L, Zhang X (2013) Nitrogen-doped porous carbon nanosheets as low-cost, high-performance anode material for sodium-ion batteries. ChemSusChem 6:56–60

    Article  Google Scholar 

  14. 14.

    Fu L, Tang K, Song K, van Aken PA, Yu Y, Maier J (2014) Nitrogen doped porous carbon fibres as anode materials for sodium ion batteries with excellent rate performance. Nanoscale 6:1384–1389

    Article  Google Scholar 

  15. 15.

    Cao Y, Xiao L, Sushko ML, Wang W, Schwenzer B, Xiao J, Nie Z, Saraf LV, Yang Z, Liu J (2012) Sodium ion insertion in hollow carbon nanowires for battery applications. Nano Lett 12:3783–3787

    Article  Google Scholar 

  16. 16.

    Chen T, Liu Y, Pan L, Lu T, Yao Y, Sun Z, Chua DHC, Chen Q (2014) Electrospun carbon nanofibers as anode materials for sodium ion batteries with excellent cycle performance. J Mater Chem A 2:4117–4121

    Article  Google Scholar 

  17. 17.

    Ge Y, Jiang H, Fu K, Zhang C, Zhu J, Chen C, Lu Y, Qiu Y, Zhang X (2014) Copper-doped Li4Ti5O12/carbon nanofiber composites as anode for high-performance sodium-ion batteries. J Power Sources 272:860–865

    Article  Google Scholar 

  18. 18.

    Pan H, Lu X, Yu X, Hu YS, Li H, Yang XQ, Chen L (2013) Sodium storage and transport properties in layered Na2Ti3O7 for room-temperature sodium-ion batteries. Adv Energy Mater 3:1186–1194

    Article  Google Scholar 

  19. 19.

    Ge Y, Jiang H, Zhu J, Lu Y, Chen C, Hu Y, Qiu Y, Zhang X (2015) High cyclability of carbon-coated TiO2 nanoparticles as anode for sodium-ion batteries. Electrochim Acta 157:142–148

    Article  Google Scholar 

  20. 20.

    Xue L, Xia X, Tucker T, Fu K, Zhang S, Li S, Zhang X (2013) A simple method to encapsulate SnSb nanoparticles into hollow carbon nanofibers with superior lithium-ion storage capability. J Mater Chem A 1:13807–13813

    Article  Google Scholar 

  21. 21.

    Li Y, Guo B, Ji L, Lin Z, Xu G, Liang Y, Zhang S, Toprakci O, Hu Y, Alcoutlabi M, Zhang X (2013) Structure control and performance improvement of carbon nanofibers containing a dispersion of silicon nanoparticles for energy storage. Carbon 51:185–194

    Article  Google Scholar 

  22. 22.

    Liu Y, Zhang N, Jiao L, Tao Z, Chen J (2015) Ultrasmall Sn nanoparticles embedded in carbon as high-performance anode for sodium-ion batteries. Adv Funct Mater 25:214–220

    Article  Google Scholar 

  23. 23.

    Zhu Y, Han X, Xu Y, Liu Y, Zheng S, Xu K, Hu L, Wang C (2013) Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode. ACS Nano 7:6378–6386

    Article  Google Scholar 

  24. 24.

    Chen C, Fu K, Lu Y, Zhu J, Xue L, Hu Y, Zhang X (2015) Use of a tin antimony alloy-filled porous carbon nanofiber composite for use as anode in sodium-ion batteries. RSC Adv 5:30793–30800

    Article  Google Scholar 

  25. 25.

    Fu K, Xue L, Yildiz O, Li S, Lee H, Li Y, Xu G, Zhou L, Bradford PD, Zhang X (2013) Effect of CVD carbon coatings on Si@CNF composite as anode for lithium-ion batteries. Nano Energy 22:976–986

    Article  Google Scholar 

  26. 26.

    Wang Y, Su D, Wang C, Wang G (2013) SnO2@MWCNT nanocomposite as a high capacity anode material for sodium-ion batteries. Electrochem Commun 29:8–11

    Article  Google Scholar 

  27. 27.

    Su D, Ahn HJ, Wang G (2013) SnO2@graphene nanocomposites as anode materials for Na-ion batteries with superior electrochemical performance. Chem Commun 49:3131–3133

    Article  Google Scholar 

  28. 28.

    Xie X, Su D, Zhang J, Chen S, Mondal AK, Wang G (2015) A comparative investigation on the effects of nitrogen-doping into graphene on enhancing the electrochemical performance of SnO2/graphene for sodium-ion batteries. Nanoscale 7:3164–3172

    Article  Google Scholar 

  29. 29.

    Wang YX, Lim YG, Park MS, Chou SL, Kim JH, Liu HK, Dou SX, Kim YJ (2014) Ultrafine SnO2 nanoparticle loading onto reduced graphene oxide as anodes for sodium-ion batteries with superior rate and cycling performances. J Mater Chem A 2:529–534

    Article  Google Scholar 

  30. 30.

    Zhang X, Lu Y (2014) Centrifugal spinning: an alternative approach to fabricate nanofibers at high speed and low cost. Polym Rev 54:677–701

    Article  Google Scholar 

  31. 31.

    Lu Y, Fu K, Zhang S, Li Y, Chen C, Zhu J, Yanilmaz M, Dirican M, Zhang X (2015) Centrifugal spinning: a novel approach to fabricate porous carbon fibers as binder-free electrodes for electric double-layer capacitors. J Power Sources 273:502–510

    Article  Google Scholar 

  32. 32.

    Lu Y, Li Y, Zhang S, Xu G, Fu K, Lee H, Zhang X (2013) Parameter study and characterization for polyacrylonitrile nanofibers fabricated via centrifugal spinning process. Eur Polym J 49:3834–3845

    Article  Google Scholar 

  33. 33.

    Liu Y, Xu Y, Zhu Y, Culver JN, Lundgren CA, Xu K, Wang C (2013) Tin-coated viral nanoforests as sodium-ion battery anodes. ACS Nano 7:3627–3634

    Article  Google Scholar 

  34. 34.

    Xu Y, Zhu Y, Liu Y, Wang C (2013) Electrochemical performance of porous carbon/tin composite anodes for sodium-ion and lithium-ion batteries. Adv Energy Mater 3:128–133

    Article  Google Scholar 

  35. 35.

    Su D, Wang C, Ahn H, Wang G (2013) Octahedral tin dioxide nanocrystals as high capacity anode materials for Na-ion batteries. Phys Chem Chem Phys 15:12543–12550

    Article  Google Scholar 

  36. 36.

    Li L, Kovalchuk A, Tour JM (2014) SnO2-reduced graphene oxide nanoribbons as anodes for lithium ion batteries with enhanced cycling stability. Nano Res 7:1319–1326

    Article  Google Scholar 

  37. 37.

    Zhao X, Zhang Z, Yang F, Fu Y, Lai Y, Li J (2015) Core–shell structured SnO2 hollow spheres–polyaniline composite as an anode for sodium-ion batteries. RSC Adv 5:31465–31471

    Article  Google Scholar 

  38. 38.

    Tian Q, Zhang Z, Yang L, Hirano S, Mater J (2014) Synthesis of SnO2/Sn@ carbon nanospheres dispersed in the interspaces of a three-dimensional SnO2/Sn@ carbon nanowires network, and their application as an anode material for lithium-ion batteries. J Mater Chem A 2:12881–12887

    Article  Google Scholar 

  39. 39.

    Lian P, Zhu X, Liang S, Li Z, Yang W, Wang H (2011) High reversible capacity of SnO2/graphene nanocomposite as an anode material for lithium-ion batteries. Electrochim Acta 56:4532–4539

    Article  Google Scholar 

  40. 40.

    Zhou X, Yin YX, Wan LJ, Guo YG (2012) A robust composite of SnO2 hollow nanospheres enwrapped by graphene as a high-capacity anode material for lithium-ion batteries. J Mater Chem 22:17456–17459

    Article  Google Scholar 

Download references


This study was supported by National Science Foundation under Award Number CMMI-1231287.

Author information



Corresponding author

Correspondence to Xiangwu Zhang.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Fu, K., Zhu, J. et al. Comparing the structures and sodium storage properties of centrifugally spun SnO2 microfiber anodes with/without chemical vapor deposition. J Mater Sci 51, 4549–4558 (2016).

Download citation


  • SnO2
  • Chemical Vapor Deposition
  • Discharge Capacity
  • Electrochemical Performance
  • Cyclic Voltammetry Curve