Journal of Materials Science

, Volume 51, Issue 9, pp 4470–4480 | Cite as

Robust mesoporous silica compacts: multi-scale characterization of microstructural changes related to physical–mechanical properties

  • Harsh Maheshwari
  • John D. Roehling
  • Bryce A. Turner
  • Jamal Abdinor
  • Tien B. Tran-Roehling
  • Milind D. Deo
  • Michael H. Bartl
  • Subhash H. Risbud
  • Klaus van Benthem
Original Paper

Abstract

Spark plasma sintering (SPS) was used to compact chemically synthesized mesoporous silica powders with ordered hexagonal nanopore channels (~5 nm). Solid compact disks (~19 mm diameter) densified at processing temperatures from 600 to 1000 °C were characterized at multiple length scales using scanning electron microscopy, transmission electron microscopy, Vickers hardness tests, and Brunauer–Emmett–Teller gas adsorption measurements. Microscopy revealed both micro- and nanoporosity in the compacted disks and the hexagonal mesopore channels in the starting powders were retained during SPS at temperatures up to 850 °C under a uniaxial pressure of 10.6 MPa. The degree of macroporosity in SPS samples was correlated to the mechanical properties, surface area, and pore morphology. The macroporosity is retained up to 950 °C under the same pressure, and the degree of macroporosity increases when the mesopores collapse due to individual particle shrinkage. The results of multi-scale characterization of the mesoporous silica compacts were used to shed light on the role of nanostructure and microstructure on the mechanical and physical properties of SPS processed compacted disks.

Supplementary material

10853_2016_9759_MOESM1_ESM.gif (20.1 mb)
Supplementary material 1 (GIF 20555 kb)
10853_2016_9759_MOESM2_ESM.mpg (11.2 mb)
Supplementary material 2 (MPG 11455 kb)
10853_2016_9759_MOESM3_ESM.pdf (119 kb)
Supplementary material 3 (PDF 118 kb)

References

  1. 1.
    Taguchi A, Schüth F (2005) Ordered mesoporous materials in catalysis. Microporous Mesoporous Mater 77:1–45. doi:10.1016/j.micromeso.2004.06.030 CrossRefGoogle Scholar
  2. 2.
    Perego C, Millini R (2013) Porous materials in catalysis: challenges for mesoporous materials. Chem Soc Rev 42:3956–3976. doi:10.1039/C2CS35244C CrossRefGoogle Scholar
  3. 3.
    Kumar P, Guliants VV (2010) Periodic mesoporous organic–inorganic hybrid materials: applications in membrane separations and adsorption. Microporous Mesoporous Mater 132:1–14. doi:10.1016/j.micromeso.2010.02.007 CrossRefGoogle Scholar
  4. 4.
    Zhou L, Liu X, Sun Y et al (2005) Methane sorption in ordered mesoporous silica SBA-15 in the presence of water. J Phys Chem B 109:22710–22714CrossRefGoogle Scholar
  5. 5.
    Khan AL, Klaysom C, Gahlaut A et al (2012) SPEEK and functionalized mesoporous MCM-41 mixed matrix membranes for CO2 separations. J Mater Chem 22:20057–20064. doi:10.1039/C2JM34885C CrossRefGoogle Scholar
  6. 6.
    Melde B, Johnson B, Charles P (2008) Mesoporous silicate materials in sensing. Sensors 8:5202–5228. doi:10.3390/s8085202 CrossRefGoogle Scholar
  7. 7.
    Wagner T, Haffer S, Weinberger C et al (2013) Mesoporous materials as gas sensors. Chem Soc Rev 42:4036–4053. doi:10.1039/C2CS35379B CrossRefGoogle Scholar
  8. 8.
    Argyo C, Weiss V, Bräuchle C, Bein T (2013) Multifunctional mesoporous silica nanoparticles as a universal platform for drug delivery. Chem Mater 26:435–451. doi:10.1021/cm402592t CrossRefGoogle Scholar
  9. 9.
    Vallet Regí M, Balas F, Arcos D (2007) Mesoporous materials for drug delivery. Angew Chem Int Ed 46:7548–7558. doi:10.1002/anie.200604488 CrossRefGoogle Scholar
  10. 10.
    Scott Brian J, Gernot Wirnsberger A, Stucky GD (2001) Mesoporous and mesostructured materials for optical applications. Chem Mater 13:3140–3150. doi:10.1021/cm0110730 CrossRefGoogle Scholar
  11. 11.
    Bartl MH, Boettcher SW, Hu EL, Stucky GD (2004) Dye-activated hybrid organic/inorganic mesostructured titania waveguides. J Am Chem Soc 126:10826–10827CrossRefGoogle Scholar
  12. 12.
    Bartl MH, Scott BJ, Huang HC et al (2002) Synthesis and luminescence properties of mesostructured thin films activated by in situ formed trivalent rare earth ion complexes. Chem Commun 21:2474–2475. doi:10.1039/B206433B CrossRefGoogle Scholar
  13. 13.
    Bartl MH, Puls SP, Tang J et al (2004) Cubic mesoporous frameworks with a mixed semiconductor nanocrystalline wall structure and enhanced sensitivity to visible light. Angew Chem Int Ed 43:3037–3040. doi:10.1002/anie.200453840 CrossRefGoogle Scholar
  14. 14.
    Crossland EJW, Noel N, Sivaram V et al (2013) Mesoporous TiO2 single crystals delivering enhanced mobility and optoelectronic device performance. Nature 495:215–219. doi:10.1038/nature11936 CrossRefGoogle Scholar
  15. 15.
    Prouzet E, Cot F, Nabias G et al (1999) Assembly of mesoporous silica molecular sieves based on nonionic ethoxylated sorbitan esters as structure directors. Chem Mater 11:1498–1503CrossRefGoogle Scholar
  16. 16.
    Zhao D, Huo Q, Feng J et al (1998) Nonionic triblock and star diblock copolymer and oligomeric surfactant syntheses of highly ordered, hydrothermally stable, mesoporous silica structures. J Am Chem Soc 120:6024–6036CrossRefGoogle Scholar
  17. 17.
    Zhao D, Feng J, Huo Q et al (1998) Triblock copolymer syntheses of mesoporous silica with periodic 50 to 300 angstrom pores. Science 279:548–552CrossRefGoogle Scholar
  18. 18.
    Sangchoom W, Mokaya R (2012) High temperature synthesis of exceptionally stable pure silica MCM-41 and stabilisation of calcined mesoporous silicas via refluxing in water. J Mater Chem 22:18872–18878. doi:10.1039/C2JM33837H CrossRefGoogle Scholar
  19. 19.
    Corma A (1997) From microporous to mesoporous molecular sieve materials and their use in catalysis. Chem Rev 97:2373–2419CrossRefGoogle Scholar
  20. 20.
    Schüth F, Schmidt W (2002) Microporous and Mesoporous Materials. Adv Eng Mater 4:269–279. doi:10.1002/1527-2648(20020503)4:5 CrossRefGoogle Scholar
  21. 21.
    Sanchez C, Boissiere C, Grosso D et al (2008) Design, synthesis, and properties of inorganic and hybrid thin films having periodically organized nanoporosity. Chem Mater 20:682–737CrossRefGoogle Scholar
  22. 22.
    Soll S, Zhao Q, Weber J, Yuan J (2013) Activated CO2 sorption in mesoporous imidazolium-type poly(ionic liquid)-based polyampholytes. Chem Mater 25:3003–3010. doi:10.1021/cm4009128 CrossRefGoogle Scholar
  23. 23.
    Dillon FC, Moghal J, Koós A et al (2015) Ceramic composites from mesoporous silica coated multi-wall carbon nanotubes. Microporous Mesoporous Mater 217:159–166. doi:10.1016/j.micromeso.2015.06.024 CrossRefGoogle Scholar
  24. 24.
    Melosh NA, Davidson P, Chmelka BF (2000) Monolithic mesophase silica with large ordering domains. J Am Chem Soc 122:823–829CrossRefGoogle Scholar
  25. 25.
    Huesing N, Raab C, Torma V et al (2003) Periodically mesostructured silica monoliths from diol-modified silanes. Chem Mater 15:2690–2692CrossRefGoogle Scholar
  26. 26.
    Risbud SH, Han Y-H (2013) Preface and historical perspective on spark plasma sintering. Scr Mater 69:105–106. doi:10.1016/j.scriptamat.2013.02.024 CrossRefGoogle Scholar
  27. 27.
    Chaim R (2007) Densification mechanisms in spark plasma sintering of nanocrystalline ceramics. Mater Sci Eng A 443:25–32CrossRefGoogle Scholar
  28. 28.
    Munir ZA, Anselmi-Tamburini U, Ohyanagi M (2006) The effect of electric field and pressure on the synthesis and consolidation of materials: a review of the spark plasma sintering method. J Mater Sci 41:763–777. doi:10.1007/s10853-006-6555-2 CrossRefGoogle Scholar
  29. 29.
    Dibandjo P, Bois L, Estournes C et al (2008) Silica, carbon and boron nitride monoliths with hierarchical porosity prepared by spark plasma sintering process. Microporous Mesoporous Mater 111:643–648. doi:10.1016/j.micromeso.2007.07.036 CrossRefGoogle Scholar
  30. 30.
    Majoulet O, Sandra F, Bechelany MC et al (2013) Silicon–boron–carbon– nitrogen monoliths with high, interconnected and hierarchical porosity. J Mater Chem A 1:10991–11000. doi:10.1039/C3TA12119D CrossRefGoogle Scholar
  31. 31.
    Palenstijn WJ, Batenburg KJ, Sijbers J (2011) Performance improvements for iterative electron tomography reconstruction using graphics processing units (GPUs). J Struct Biol 176:250–253. doi:10.1016/j.jsb.2011.07.017 CrossRefGoogle Scholar
  32. 32.
    Kirkbir F, Murata H, Meyers D et al (1996) Drying and sintering of sol-gel derived large SiO2 monoliths. J Sol-Gel Sci Technol 6:203–217. doi:10.1007/BF00402691 CrossRefGoogle Scholar
  33. 33.
    da Silveira T, Awano CM, Donatti DA et al (2014) About the thermal stability and pore elimination in the ordered hexagonal mesoporous silica SBA-15. Microporous Mesoporous Mater 190:227–233. doi:10.1016/j.micromeso.2014.02.023 CrossRefGoogle Scholar
  34. 34.
    Ryshkewitch E (1953) Compression strength of porous sintered alumina and zirconia. J Am Ceram Soc 36:65–68. doi:10.1111/j.1151-2916.1953.tb12837.x CrossRefGoogle Scholar
  35. 35.
    Soroka I, Sereda PJ (1968) Interrelation of hardness, modulus of elasticity, and porosity in various gypsum systems. J Am Ceram Soc 51:337–340CrossRefGoogle Scholar
  36. 36.
    Coble RL, Kingery WD (1956) Effect of porosity on physical properties of sintered alumina. J Am Ceram Soc 39:377–385. doi:10.1111/j.1151-2916.1956.tb15608.x CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media New York 2016

Authors and Affiliations

  1. 1.Department of Chemical Engineering and Materials ScienceUniversity of California, DavisDavisUSA
  2. 2.Department of ChemistryUniversity of UtahSalt Lake CityUSA
  3. 3.Department of Chemical EngineeringUniversity of UtahSalt Lake CityUSA
  4. 4.Department of Mechanical EngineeringUniversity of the PacificStocktonUSA

Personalised recommendations